نتایج جستجو برای: Polynomials Chebyshev
تعداد نتایج: 40529 فیلتر نتایج به سال:
In this paper, we study the asymptotics of the discrete Chebyshev polynomials tn(z,N) as the degree grows to infinity. Global asymptotic formulas are obtained as n → ∞, when the ratio of the parameters n/N = c is a constant in the interval (0, 1). Our method is based on a modified version of the Riemann-Hilbert approach first introduced by Deift and Zhou.
We characterize the generalized Chebyshev polynomials of the second kind (Chebyshev-II), and then we provide a closed form of the generalized Chebyshev-II polynomials using the Bernstein basis. These polynomials can be used to describe the approximation of continuous functions by Chebyshev interpolation and Chebyshev series and how to efficiently compute such approximations. We conclude the pap...
We study the problem of reconstructing a sparse polynomial in a basis of Chebyshev polynomials (Chebyshev basis in short) from given samples on a Chebyshev grid of [−1, 1]. A polynomial is called M -sparse in a Chebyshev basis, if it can be represented by a linear combination of M Chebyshev polynomials. For a polynomial with known and unknown Chebyshev sparsity, respectively, we present efficie...
The Chebyshev or L∞ estimator minimizes the maximum absolute residual and is useful in situations where the error distribution has bounded support. In this paper, we derive the asymptotic distribution of this estimator in cases where the error distribution has bounded and unbounded support. We also consider the asymptotics of set-membership estimators such as the Chebyshev centre and maximum in...
The mth Chebyshev polynomial of a square matrix A is the monic polynomial that minimizes the matrix 2-norm of p(A) over all monic polynomials p(z) of degree m. This polynomial is uniquely defined if m is less than the degree of the minimal polynomial of A. We study general properties of Chebyshev polynomials of matrices, which in some cases turn out to be generalizations of well known propertie...
Odd degree Chebyshev polynomials over a ring of modulo 2 have two kinds of period. One is an “orbital period”. Odd degree Chebyshev polynomials are bijection over the ring. Therefore, when an odd degree Chebyshev polynomial iterate affecting a factor of the ring, we can observe an orbit over the ring. The “ orbital period ” is a period of the orbit. The other is a “degree period”. It is observe...
in this paper we introduce a type of fractional-order polynomials basedon the classical chebyshev polynomials of the second kind (fcss). also we construct the operationalmatrix of fractional derivative of order $ gamma $ in the caputo for fcss and show that this matrix with the tau method are utilized to reduce the solution of some fractional-order differential equations.
We give two recursive expressions for both MacWilliams and Chebyshev matrices. The expressions give rise to simple recursive algorithms for constructing the matrices. In order to derive the second recursion for the Chebyshev matrices we find out the Krawtchouk coefficients of the Discrete Chebyshev polynomials, a task interesting on its own.
We discuss Lagrange interpolation on two sets of nodes in two dimensions where the coordinates of the nodes are Chebyshev points having either the same or opposite parity. We use a formula of Xu for Lagrange polynomials to obtain a general interpolation theorem for bivariate polynomials at either set of Chebyshev nodes. An extra term must be added to the interpolation formula to handle all poly...
Faber polynomials corresponding to rational exterior mapping functions of degree (m,m − 1) are studied. It is shown that these polynomials always satisfy an (m + 1)-term recurrence. For the special case m = 2, it is shown that the Faber polynomials can be expressed in terms of the classical Chebyshev polynomials of the first kind. In this case, explicit formulas for the Faber polynomials are de...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید