Let W (G) and Sz(G) be the Wiener index and the Szeged index of a connected graph G. It is proved that if G is a connected bipartite graph of order n ≥ 4, size m ≥ n, and if ` is the length of a longest isometric cycle of G, then Sz(G) − W (G) ≥ n(m − n + ` − 2) + (`/2) − ` + 2`. It is also proved if G is a connected graph of order n ≥ 5 and girth g ≥ 5, then Sz(G) − W (G) ≥ PIv(G) − n(n − 1) +...