نتایج جستجو برای: Omega Polynomial

تعداد نتایج: 124600  

Journal: :iranian journal of mathematical chemistry 2010
m. ghorbani

the topological index of a graph g is a numeric quantity related to g which is invariant underautomorphisms of g. the vertex pi polynomial is defined as piv (g)  euv nu (e)  nv (e).then omega polynomial (g,x) for counting qoc strips in g is defined as (g,x) =cm(g,c)xc with m(g,c) being the number of strips of length c. in this paper, a new infiniteclass of fullerenes is constructed. the ...

Journal: :iranian journal of mathematical chemistry 2012
m. ghorbani m. songhori

the omega polynomial(x) was recently proposed by diudea, based on the length of stripsin given graph g. the sadhana polynomial has been defined to evaluate the sadhana index ofa molecular graph. the pi polynomial is another molecular descriptor. in this paper wecompute these three polynomials for some infinite classes of nanostructures.

Journal: :international journal of nanoscience and nanotechnology 2010
mircea v. diudea katalin nagy monica l. pop f. gholami-nezhaad a. r. ashrafi

design of crystal-like lattices can be achieved by using some net operations. hypothetical networks, thus obtained, can be characterized in their topology by various counting polynomials and topological indices derived from them. the networks herein presented are related to the dyck graph and described in terms of omega polynomial and piv polynomials.

 Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...

M. GHORBANI M. SONGHORI

The Omega polynomial(x) was recently proposed by Diudea, based on the length of strips in given graph G. The Sadhana polynomial has been defined to evaluate the Sadhana index of a molecular graph. The PI polynomial is another molecular descriptor. In this paper we compute these three polynomials for some infinite classes of nanostructures.

M. GHORBANI

The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as PIv (G)  euv nu (e)  nv (e). Then Omega polynomial (G,x) for counting qoc strips in G is defined as (G,x) = cm(G,c)xc with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. ...

2007
MIRCEA V. DIUDEA Mircea V. Diudea

A new counting polynomial, called the “Omega” Ω(G, x) polynomial, is proposed on the ground of quasi-orthogonal cut “qoc” edge strips in a bipartite lattice. Within a qoc not all cut edges are necessarily orthogonal, meaning not all are pairwise codistant. Two topological indices: CI (Cluj-Ilmenau), eventually equal to the well-known PI index, in planar, bipartite graphs and IΩ are defined on t...

Journal: :bulletin of the iranian mathematical society 0
n. nyamoradi h. zangeneh

we consider the number of zeros of the integral $i(h) = oint_{gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. we prove that the number of zeros of $i(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.

Beata Szefler, Mircea V. Diudea,

The polybenzene units BTX 48, X=A (armchair) and X=Z (zig-zag) dimerize forming “eclipsed” isomers, the oligomers of which form structures of five-fold symmetry, called multi-tori. Multi-tori can be designed by appropriate map operations. The genus of multi-tori was calculated from the number of tetrapodal units they consist. A description, in terms of Omega polynomial, of the two linearly peri...

We consider the number of zeros of the integral $I(h) = oint_{Gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $Gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. We prove that the number of zeros of $I(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید