نتایج جستجو برای: Nonlinear Autoregressive Model

تعداد نتایج: 2261586  

Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...

Journal: :Signal Processing 2002
Hiroko Kato Tohru Ozaki

A nonlinear autoregressive model, the process feedback nonlinear autoregressive (PFNAR) model, in which the autoregressive coe0cients are a function of the combination of past data, is proposed. The autoregressive coe0cients of the PFNAR model consist of sequential autoregressive parts, and a data process feedback part that feeds back the in2uence from previous data points with “signi4cant dela...

In this paper, the nonlinear autoregressive model with exogenous variables as a new neural network is used for timing of the stock markets on the basis of the technical analysis of Japanese Candlestick. In this model, the “nonlinear autoregressive model with exogenous variables” is an analyzer. For a more reliable comparison, here (like the literature) two approaches of  Raw-based and Signal-ba...

2003
Timo Teräsvirta Dick van Dijk Marcelo C. Medeiros

In this paper we examine the forecast accuracy of four univariate time series models for 47 macroeconomic variables of the G7 economies. The models considered are the linear autoregressive model, the smooth transition autoregressive model, and two neural network models. The two neural network models are different because they are specified using two different techniques. Forecast accuracy is as...

2014
Xiao-Hua Yang Yu-Qi Li

There are many parameters which are very difficult to calibrate in the threshold autoregressive prediction model for nonlinear time series. The threshold value, autoregressive coefficients, and the delay time are key parameters in the threshold autoregressive prediction model. To improve prediction precision and reduce the uncertainties in the determination of the above parameters, a new DNA de...

Journal: :J. Applied Mathematics 2012
Weili Xiong Wei Fan Rui Ding

This paper studies least-squares parameter estimation algorithms for input nonlinear systems, including the input nonlinear controlled autoregressive IN-CAR model and the input nonlinear controlled autoregressive autoregressive moving average IN-CARARMA model. The basic idea is to obtain linear-in-parameters models by overparameterizing such nonlinear systems and to use the least-squares algori...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه علامه طباطبایی 1390

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

Journal: :Automatica 2008
Ingela Lind Lennart Ljung

Regressor selection can be viewed as the rst step in the system identi cation process. The bene ts of nding good regressors before estimating complex models are especially clear for nonlinear systems, where the class of possible models is huge. In this article, a structured way of using the tool Analysis of Variance (ANOVA) is presented and used for NARX model (nonlinear autoregressive model wi...

Journal: :Environmental Modelling and Software 2001
Anthony D. Hall Joakim Skalin Timo Teräsvirta

A smooth transition autoregressive model is estimated for the Southern Oscillation Index, an index commonly used as a measure of El Niño events. Using standard measures there is no indication of nonstationarity in the index. A logistic smooth transition autoregressive model describes the most turbulent periods in the data (these correspond to El Niño events) better than a linear autoregressive ...

Journal: :مرتع و آبخیزداری 0
ام البنین بذرافشان استادیار دانشکدة منابع طبیعی دانشگاه هرمزگان علی سلاجقه دانشیار دانشکدة کشاورزی و منابع طبیعی دانشگاه تهران احمد فاتحی مرج استادیار مرکز تحقیقات کم آبی و خشک سالی در کشاورزی و منابع طبیعی، تهران محمد مهدوی استاد دانشکدة کشاورزی و منابع طبیعی دانشگاه تهران جواد بذرافشان استادیار دانشکدة کشاورزی و منابع طبیعی دانشگاه تهران سمیه حجابی دانشجوی دکتری دانشکدة کشاورزی و منابع طبیعی دانشگاه تهران

drought is random and nonlinear phenomenon and using linear stochastic models, nonlinear artificial neural network and hybrid models is advantaged for drought forecasting. this paper presents the performances of autoregressive integrated moving average (arima), direct multi-step neural network (dmsnn), recursive multi-step neural network (rmsnn), hybrid stochastic neural network of directive ap...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید