نتایج جستجو برای: Newton-Euler formulation
تعداد نتایج: 151483 فیلتر نتایج به سال:
A linear complementarity formulation for dynamic multi-rigid-body contact problems with Coulomb friction is presented. The formulation, based on explicit Euler integration and polygonal approximation of the friction cone, is guaranteed to have a solution for any number of contacts and contact con guration. A model with the same property is formulated for impact problems with friction and nonzer...
The dynamics of rigid bodies coupled by holonomic and non-holonomic constraints are formulated by the Newton Euler method employing a compact notation. The compact notation involves the use of two three by three matrices A and B and the totality of constraint vector C. The Lagrangian and Newton Euler methods are related for a one link rigid body in order to introduce the methodology of the pape...
The main objective of the present study is to utilize a novel linearization strategy to linearize the convection terms of the quasi-one-dimensional Euler governing equations on collocated grids and to examine its shock-capturing capabilities. To avoid a pressure checkerboard problem on the collocated grids, it is necessary to utilize two velocity definitions at each cell face. Similarly, we def...
The main objective of the present study is to utilize a novel linearization strategy to linearize the convection terms of the quasi-one-dimensional Euler governing equations on collocated grids and to examine its shock-capturing capabilities. To avoid a pressure checkerboard problem on the collocated grids, it is necessary to utilize two velocity definitions at each cell face. Similarly, we def...
In this paper we present a unigrid multi–model formulation for transonic flow calculations based on solving, in sequence, the full potential equation and the the Euler equations. The goal is to minimize the overall computation time to simulate steady flows by using a more computational efficient physical model in the early iteration steps. The proposed method is based on two steps. In the first...
In this paper, two new methods for computation of the inertia matrix of robot manipulators are proposed. The new algorithms are based on a block diagram of manipulator dynamics, derived from the Newton-Euler formulation. The proposed methods allows to compute the inertia matrix explicitly, in an efficient recursive manner, and can be applied for robot dynamics simulation.
The aim of this paper is to derive the equations of motion for biped robot during different walking phases using two well-known formulations: Euler-Lagrange (E-L) and Newton-Euler (N-E) equations. The modeling problems of biped robots lie in their varying configurations during locomotion; they could be fully actuated during the single support phase (SSP) and over-actuated during the double supp...
This paper presents algorithms for identifying parameters of an N degrees-of-freedom robotic manipulator. First, we outline the fundamental properties of the Newton-Euler formulation of robot dynamics from the view point of parameter identification. We then show that the Newton-Euler model which is nonlinear in the dynamic parameters can be transformed into an equivalent modified model which is...
This paper presents algorithms for identifying parameters of an N degrees-of-freedom robotic manipulator. First, we outline the fundamental properties of the Newton-Euler formulation of robot dynamics from the view point of parameter identification. We then show that the Newton-Euler model which is nonlinear in the dynamic parameters can be transformed into an equivalent modified model which is...
There are many occasions where the base of a robotic manipulator is attached to a moving platform, such as on a moving ship, terrain or space shuttle. In this paper a dynamic model of a robotic manipulator mounted on a moving base is derived using both Newton-Euler and Lagrange-Euler methods. The presented models are simulated for a Mitsubishi PA10-6CE robotic manipulator characteristics mounte...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید