نتایج جستجو برای: Nanopores
تعداد نتایج: 2551 فیلتر نتایج به سال:
Nanopores are extremely sensitive single-molecule sensors. Recently, electron beams have been used to fabricate synthetic nanopores in thin solid-state membranes with subnanometer resolution. Here we report a new class of chemically modified nanopore sensors. We describe two approaches for monolayer coating of nanopores: (1) self-assembly from solution, in which nanopores approximately 10 nm di...
Abstract Single- and multilayer graphene sheets (MLGSs) are projectile-resisting materials that can be bombarded by nanoparticles to produce graphene sheets of various sizes and distributions of nanopores. These sheets are used in a variety of applications, including DNA sequencing, water desalination, and phase separation. Here, the impact-withstanding efficiency of graphene nanosheets and the...
Determining water structure in nanopores and its influence on water transport behaviour is of great importance for understanding and regulating the transport across nanopores. Here we report an ultrafast-slow flow transition phenomenon for water transport across nanopores of carbon nanotubes owing to the change in water structure in nanopores induced by temperature. By performing extensive mole...
Single conical nanopores in polymer foils are fabricated by means of the ion track etching technique. They are chemically modified so that they selectively react with certain molecules to be analyzed. This specific reaction is electrochemically monitored by measuring the electrolyte current flowing through the nanopores in an electrochemical cell. This current is dependent on the presence and c...
Atomically thin materials, and in particular graphene, provide a new class of solid-state nanopores-apertures that allow for the exchange of matter across thin membranes-with the smallest possible volumes of any ion channel. As the diameter of these nanopores becomes comparable to that of hydrated ions, sub-continuum effects have the potential to enable selective transport similar to that obser...
Solid-state nanopores have emerged as versatile single-molecule sensors for applications including DNA sequencing, protein unfolding, micro-RNA detection, label-free detection of single nucleotide polymorphisms, and mapping of DNA-binding proteins involved in homologous recombination. While machining nanopores in dielectric membranes provides nanometer-scale precision, the rigid silicon support...
The presence of Cs+ ions in the pseudo-1D nanopores of zeolite ITQ-4, Si32O64, is confirmed by x-ray diffraction and atomic pair distribution function analysis. Inside the nanopores the Cs+ ions are found to assemble in zigzag chains and thus form an extended, positively charged sublattice providing charge balance for a low-density electron gas also confined to the nanopores.
Driving single nanoparticles like DNA and proteins by the electrophoretic force through a nanopore in the presence of an electric field produces an ionic current, which passes from the nanopore. The current blockage due to the nanoparticle translocation makes an observable change in the ionic current, which is useful for the study of bio molecules. Many efforts are made to perceive the electro ...
In the last two decades, new techniques that monitor ionic current modulations as single molecules pass through a nanoscale pore have enabled numerous single-molecule studies. While biological nanopores have recently shown the ability to resolve single nucleotides within individual DNA molecules, similar developments with solid-state nanopores have lagged, due to challenges both in fabricating ...
The objective of this study was to demonstrate the possibility of using 1-butanol to reliably detect the open-pore current of pyramidal solid-state nanopores produced in silicon wafers. The nanopores were produced through controlled pore formation by neutralizing an etchant (KOH) with a strong acid (HCl). Since nanopores produced by this method are deeper than those made in nanometerthick membr...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید