نتایج جستجو برای: Multi-Layer Perceptron Network

تعداد نتایج: 1313627  

Journal: :journal of industrial engineering, international 2006
v. o. oladokun o. e. charles-owaba c. s. nwaouzru

this study shows the usefulness of artificial neural network (ann) in maintenance planning and man-agement. an ann model based on the multi-layer perceptron having three hidden layers and four processing elements per layer was built to predict the expected downtime resulting from a breakdown or a maintenance activity. the model achieved an accuracy of over 70% in predicting the expected downtime.

Journal: :journal of computer and robotics 0
farhad abedini faculty of computer and information technology engineering, qazvin branch, islamic azad university, qazvin, iran mohammad bagher menhaj department of computer engineering, amirkabir university of technology, tehran, iran. mohammad reza keyvanpour department of computer engineering, alzahra university, vanak, tehran, iran

in this paper, a state-of-the-art neuron mathematical model of neural tensor network (ntn) is proposed to rdf knowledge base completion problem. one of the difficulties with the parameter of the network is that representation of its neuron mathematical model is not possible. for this reason, a new representation of this network is suggested that solves this difficulty. in the representation, th...

Journal: :journal of electrical and computer engineering innovations 2014
mohammad r. pishgoo mohammad r. n. avanaki reza ebrahimpour

optical coherence tomography (oct) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. an inherent characteristic of coherent imaging is the presence of speckle noise. in this study we use a new ensemble framework which is a combination of several multi-layer perceptron (mlp) neural networks to denoise oct images. the noise is...

How to reconfigure a logic gate for a variety of functions is an interesting topic. In this paper, a different method of designing logic gates are proposed. Initially, due to the training ability of the multilayer perceptron neural network, it was used to create a new type of logic and full adder gates. In this method, the perceptron network was trained and then tested. This network was 100% ac...

Journal: :IEICE Transactions 2011
Chihiro Ikuta Yoko Uwate Yoshifumi Nishio

In this study, we propose a multi-layer perceptron with a glial network which is inspired from the features of glias in the brain. All glias in the proposed network generate independent oscillations, and the oscillations propagate through the glial network with attenuation. We apply the proposed network to the two-spiral problem. Computer simulations show that the proposed network gains a bette...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز 1389

به منظور تخمین زمانی- مکانی مقدار بارش ماهیانه، با توجه به پیچیدگی پدیده و در دسترس نبودن اطلاعات فیزیکی کافی و عدم اطلاع دقیق از روابط و معادلات ریاضی حاکم بر مسئله، معمولاً به سراغ ارائ? مدلهای جعبه سیاه، که مستقل از پارامترهای فیزیکی موثر بر پدیده و معادلات حاکم بین آنها می باشد، باید رفت. در این پایان نامه مدلی ترکیبی و جعبه سیاه تحت عنوان ann-rbf به منظور تخمین زمانی- مکانی مقدار بارش ماهی...

Journal: :international journal of advanced design and manufacturing technology 0
ahmad haghani department of mechanics, faculty of engineering, shahrekord branch, islamic azad university, shahrekord, iran

strip tearing during cold rolling process has always been considered among the main concerns for steel companies. several works have been done so far regarding the examination of the issue. in this paper, experimental data from cold rolling tandem mill is used for detecting strip tearing. sensors are placed across the cold rolling tandem mill. they receive information on parameters (such as ang...

Journal: :مدیریت شهری 0
sajjad rezaei farbod zorriassatine

no unique method has been so far specified for determining the number of neurons in hidden layers of multi-layer perceptron (mlp) neural networks used for prediction. the present research is intended to optimize the number of neurons using two meta-heuristic procedures namely genetic and hill climbing algorithms. the data used in the present research for prediction are consumption data of water...

Journal: :journal of quality engineering and production optimization 2015
mohammad reza maleki maleki amirhossein amiri

in some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. in this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...

Journal: :iranian journal of chemistry and chemical engineering (ijcce) 2006
mahmoud mousavi akram avami

an artificial neural network has been used to determine the volume flux and rejections of ca2+ , na+ and cl¯, as a function of transmembrane pressure and concentrations of ca2+, polyethyleneimine, and polyacrylic acid in water softening by nanofiltration process in presence of polyelectrolytes. the feed-forward multi-layer perceptron artificial neural network including an eight-neuron hidden la...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->