نتایج جستجو برای: Multi-GPU

تعداد نتایج: 473736  

ژورنال: محاسبات نرم 2020

The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...

Journal: :Journal of Systems and Software 2016
Wookhyun Han Hoon Sung Chwa Hwidong Bae Hyosu Kim Insik Shin

Multi-GPUs appear as an attractive platform to speed up data-parallel GPGPU computation. The idea of split-and-merge execution has been introduced to accelerate the parallelism of multiple GPUs even further. However, it has not been explored before how to exploit such an idea for real-time multi-GPU systems properly. This paper presents an open-source real-time multi-GPU scheduling framework, c...

2013
H. Knibbe C. W. Oosterlee C. Vuik

We are focusing on an iterative solver for the three-dimensional Helmholtz equation on multi-GPU using CUDA (Compute Unified Device Architecture). The Helmholtz equation discretized by a second order finite difference scheme is solved with Bi-CGSTAB preconditioned by a shifted Laplace multigrid method. Two multi-GPU approaches are considered: data parallelism and split of the algorithm. Their i...

2014
Kwang-yeob Lee Jae-chang Kwak

Recent embedded processors become to be multi-cored, due to the increased power consumption by higher operating frequencies. Multi-core processors stimulate applications to be parallelized. Since general purpose CPU has small number of core, which is optimized for serial processing, it has a limitation of parallel processing. To overcome this limitation, GPU is used for the parallel processing....

2011
Shinpei Kato Scott Brandt Yutaka Ishikawa

The graphics processing unit (GPU) is becoming a very powerful platform to accelerate graphics and data-parallel compute-intensive applications. It significantly outperforms traditional multi-core processors in performance and energy efficiency. Its application domains also range widely from embedded systems to high-performance computing systems. However, operating systems support is not adequa...

2012
Mikael Olsson Niklas Gullberg

Context. The cryptographically secure pseudo-random number generator Blum Blum Shub (BBS) is a simple algorithm with a strong security proof, however it requires very large numbers to be secure, which makes it computationally heavy. The Graphics Processing Unit (GPU) is a common vector processor originally dedicated to computer-game graphics, but has since been adapted to perform general-purpos...

2014
Dominik Żurek Marcin Pietroń Maciej Wielgosz Kazimierz Wiatr

Sorting is a common problem in computer science. There are a lot of wellknown sorting algorithms created for sequential execution on a single processor. Recently, many-core and multi-core platforms have enabled the creation of wide parallel algorithms. We have standard processors that consist of multiple cores and hardware accelerators, like the GPU. Graphic cards, with their parallel architect...

Journal: :Applied optics 2009
Hoonjong Kang Fahri Yaraş Levent Onural

An approximation for fast digital hologram generation is implemented on a central processing unit (CPU), a graphics processing unit (GPU), and a multi-GPU computational platform. The computational performance of the method on each platform is measured and compared. The computational speed on the GPU platform is much faster than on a CPU, and the algorithm could be further accelerated on a multi...

2010
Florian Jung Stefan Wesarg

Medical image registration is time-consuming but can be sped up employing parallel processing on the GPU. Normalized mutual information (NMI) is a well performing similarity measure for performing multi-modal registration. We present CUDA based solutions for computing NMI on the GPU and compare the results obtained by rigidly registering multi-modal data sets with a CPU based implementation. Ou...

2014
Yixun Liu Andriy Kot Fotis Drakopoulos Chengjun Yao Andriy Fedorov Andinet Enquobahrie Olivier Clatz Nikos Chrisochoides

As part of the ITK v4 project efforts, we have developed ITK filters for physics-based non-rigid registration (PBNRR), which satisfies the following requirements: account for tissue properties in the registration, improve accuracy compared to rigid registration, and reduce execution time using GPU and multi-core accelerators. The implementation has three main components: (1) Feature Point Selec...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->