نتایج جستجو برای: Moving-average processes
تعداد نتایج: 974236 فیلتر نتایج به سال:
The sample autocorrelation function (acf) of a stationary process has played a central statistical role in traditional time series analysis, where the assumption is made that the marginal distribution has a second moment. Now, the classical methods based on acf are not applicable in heavy tailed modeling. Using the codifference function as dependence measure for such processes be shown it be as...
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Blackwell Publishing and Royal Statistical Society are col...
the complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. as a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.
the complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. as a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.
For the stationary invertible moving average process of order one with unknown innovation distribution F , we construct root-n consistent plug-in estimators of conditional expectations E(h(Xn+1)|X1, . . . , Xn). More specifically, we give weak conditions under which such estimators admit Bahadur type representations, assuming some smoothness of h or of F . For fixed h it suffices that h is loca...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید