نتایج جستجو برای: Molecular graph with tree structure‎, Multiplicative Zagreb indices

تعداد نتایج: 10050897  

‎The first multiplicative Zagreb index $Pi_1(G)$ is equal to the‎ ‎product of squares of the degree of the vertices and the second‎ ‎multiplicative Zagreb index $Pi_2(G)$ is equal to the product of‎ ‎the products of the degree of pairs of adjacent vertices of the‎ ‎underlying molecular graphs $G$‎. ‎Also‎, ‎the multiplicative sum Zagreb index $Pi_3(G)$ is equal to the product of‎ ‎the sum...

2016
Wei Gao Mohammad Reza Farahani M. R. Rajesh Kanna

In theoretical chemistry, the researchers use graph models to express the structure of molecular, and the Zagreb indices and multiplicative Zagreb indices defined on molecular graph G are applied to measure the chemical characteristics of compounds and drugs. In this paper, we present the exact expressions of multiplicative Zagreb indices for certain important chemical structures like nanotube,...

A. IRANMANESH I. GUTMAN M. HOSSEINZADEH

Todeschini et al. have recently suggested to consider multiplicative variants of additive graph invariants, which applied to the Zagreb indices would lead to the multiplicative Zagreb indices of a graph G, denoted by ( ) 1  G and ( ) 2  G , under the name first and second multiplicative Zagreb index, respectively. These are define as     ( ) 2 1 ( ) ( ) v V G G G d v and ( ) ( ) ( ) ( ) 2...

Journal: :iranian journal of mathematical chemistry 2012
a. iranmanesh m. a. hosseinzadeh i. gutman

todeschini et al. have recently suggested to consider multiplicative variants of additive graphinvariants, which applied to the zagreb indices would lead to the multiplicative zagrebindices of a graph g, denoted by ( ) 1  g and ( ) 2  g , under the name first and secondmultiplicative zagreb index, respectively. these are define as  ( )21 ( ) ( )v v gg g d vand ( ) ( ) ( )( )2 g d v d v gu...

Journal: :iranian journal of mathematical chemistry 2014
m. ghorbani m. songhori

the chromatic number of a graph g, denoted by χ(g), is the minimum number of colors such that g can be colored with these colors in such a way that no two adjacent vertices have the same color. a clique in a graph is a set of mutually adjacent vertices. the maximum size of a clique in a graph g is called the clique number of g. the turán graph tn(k) is a complete k-partite graph whose partition...

Journal: :international journal of industrial mathematics 0
v. ahmadi department of mathematics, tehran university, tehran, ‎iran. m. r. ‎darafsheh department of mathematics, shahid chamran university, ahvaz, ‎iran‎. j. ‎hashemi‎ department of mathematics, tehran university, tehran, ‎iran.

‎let g=(v,e) be a simple connected graph with vertex set v and edge set e. the first, second and third zagreb indices of g are respectivly defined by: $m_1(g)=sum_{uin v} d(u)^2, hspace {.1 cm} m_2(g)=sum_{uvin e} d(u).d(v)$ and $ m_3(g)=sum_{uvin e}| d(u)-d(v)| $ , where d(u) is the degree of vertex u in g and uv is an edge of g connecting the vertices u and v. recently, the first and second m...

The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...

J. ‎Hashemi‎ M. R. ‎Darafsheh V. Ahmadi,

‎Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The first, second and third Zagreb indices of G are respectivly defined by: $M_1(G)=sum_{uin V} d(u)^2, hspace {.1 cm} M_2(G)=sum_{uvin E} d(u).d(v)$ and $ M_3(G)=sum_{uvin E}| d(u)-d(v)| $ , where d(u) is the degree of vertex u in G and uv is an edge of G connecting the vertices u and v. Recently, the first and second m...

Journal: :transactions on combinatorics 2016
mehdi eliasi ali ghalavand

‎for a graph $g$ with edge set $e(g)$‎, ‎the multiplicative second zagreb index of $g$ is defined as‎ ‎$pi_2(g)=pi_{uvin e(g)}[d_g(u)d_g(v)]$‎, ‎where $d_g(v)$ is the degree of vertex $v$ in $g$‎. ‎in this paper‎, ‎we identify the eighth class of trees‎, ‎with the first through eighth smallest multiplicative second zagreb indeces among all trees of order $ngeq 14$‎.

2012
Jingzhong Liu Qianhong Zhang

For a (molecular) graph, the multiplicative Zagreb indices ∏ 1-index and ∏ 2index are multiplicative versions of the ordinary Zagreb indices (M1-index and M2index). In this note we report several sharp upper bounds for ∏ 1-index in terms of graph parameters including the order, size, radius, Wiener index and eccentric distance sum, and upper bounds for ∏ 2-index in terms of graph parameters inc...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید