نتایج جستجو برای: Modified NSGA II algorithm

تعداد نتایج: 1529828  

This paper proposes a modified non-dominated sorting genetic algorithm (NSGA-II) for a bi-objective location-allocation model. The purpose is to define the best places and capacity of the distribution centers as well as to allocate consumers, in such a way that uncertain consumers demands are satisfied. The objectives of the mixed-integer non-linear programming (MINLP) model are to (1) minimize...

2013
M. Rajkumar S. Baskar

This paper discusses the application of evolutionary multi-objective optimization algorithms namely Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Modified NSGA-II (MNSGA-II) for solving the Combined Economic Emission Dispatch (CEED) problem with valvepoint loading. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED prob...

Journal: :Journal of biomolecular NMR 2013
Yu Yang Keith J Fritzsching Mei Hong

A multi-objective genetic algorithm is introduced to predict the assignment of protein solid-state NMR (SSNMR) spectra with partial resonance overlap and missing peaks due to broad linewidths, molecular motion, and low sensitivity. This non-dominated sorting genetic algorithm II (NSGA-II) aims to identify all possible assignments that are consistent with the spectra and to compare the relative ...

2006
ARAVIND SESHADRI

NSGA ( [5]) is a popular non-domination based genetic algorithm for multiobjective optimization. It is a very effective algorithm but has been generally criticized for its computational complexity, lack of elitism and for choosing the optimal parameter value for sharing parameter σshare. A modified version, NSGAII ( [3]) was developed, which has a better sorting algorithm , incorporates elitism...

2009
Deepak Sharma Kalyanmoy Deb N. N. Kishore

The present work focuses on evolving the multiple light-in-weight topologies of compliant mechanism tracing user defined path. Therefore in this paper, the bi-objective set is formulated first on the optimization frame-work in which the helper objective of maximum diversity is introduced with the primary objective of minimum weight of elastic structures. Thereafter, the evolutionary algorithm (...

Journal: :journal of optimization in industrial engineering 2016
jafar bagherinejad mina dehghani

distribution centers (dcs) play important role in maintaining the uninterrupted flow of goods and materials between the manufacturers and their customers.this paper proposes a mathematical model as the bi-objective capacitated multi-vehicle allocation of customers to distribution centers. an evolutionary algorithm named non-dominated sorting ant colony optimization (nsaco) is used as the optimi...

Journal: :Water Science & Technology: Water Supply 2023

Abstract Optimally designed water distribution networks (WDNs) make engineers’ tasks difficult due to various challenges like non-linearity between head-loss and flow, commercially available distinct diameters, combinatorial, nondeterministic polynomial-time hard problems a large number of decision variables. This paper develops new hybrid NSGA-II algorithm augmented with random multi-point cro...

2004
In-Hee Lee Soo-Yong Shin Byoung-Tak Zhang

A multi-objective optimization problem (MOP) is often found in real-world optimization problem. Among various multiobjective optimization techniques, multi-objective evolutionary algorithm (MOEA) is highlighted as a good candidate due to its flexibility, feasibility, and its ability to handle multiple solutions. Among various MOEAs, we analyze 2MOEA which can achieve good convergence and divers...

M. Bagherpour, M. H. Hosseini, M. Rostami,

In decentralized construction projects, costs are mostly related to investment, material, holding, logistics, and other minor costs for implementation. For this reason, simultaneous planning of these items and appropriate scheduling of activities can significantly reduce the total costs of the project undertaken. This paper investigates the decentralized multiple construction projects schedulin...

Journal: :Evolutionary computation 2008
Hongbing Fang Qian Wang Yi-Cheng Tu Mark F. Horstemeyer

We present a new non-dominated sorting algorithm to generate the non-dominated fronts in multi-objective optimization with evolutionary algorithms, particularly the NSGA-II. The non-dominated sorting algorithm used by NSGA-II has a time complexity of O(MN(2)) in generating non-dominated fronts in one generation (iteration) for a population size N and M objective functions. Since generating non-...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید