نتایج جستجو برای: MoO3/g-C3N4
تعداد نتایج: 1225 فیلتر نتایج به سال:
A novel, multi-walled carbon nanotubes (CNT) modified white C3N4 composite (CNT/white C3N4) with enhanced visible-light-response photoactivity was prepared. The white C3N4 and CNT combined together and formed the CNT/white C3N4 composite due to electrostatically-driven self-assembly with the hydrothermal method. The as-prepared white C3N4 and CNT/white C3N4 composite photocatalyst were characte...
Different g-C3N4 composite systems (coke carbon/g-C3N4, Bi/Bi2WO6/g-C3N4 and Bi/Bi2MoO6/g-C3N4) have been assessed as photocatalysts for wastewater pollutants removal. The coke carbon/g-C3N4 hybrid, produced by thermal treatment at 550 °C of a composite made from melamine cyanurate and coke, only showed activity under UV-light irradiation. On the other hand, inorganic Bi spheres/Bi mixed oxides...
We propose an efficient method to synthesize large-scale soluble acidified graphitic carbon nitride (g-C3N4). The as-prepared material exhibits the characteristics of a poly-ammonium salt and is soluble in several solvents with good dissolution-recrystallization reversible equilibrium. The pH value- and temperature-dependent solubility of the acidified g-C3N4 facilitates its separation and puri...
A new type of graphitic C3N4-based composite photocatalysts was designed and prepared by co-loading PEDOT as a hole transport pathway and Pt as an electron trap on C3N4. The as-prepared C3N4-PEDOT-Pt composites showed drastically enhanced activity for visible light-driven photocatalytic H2 production compared to those of C3N4-PEDOT and C3N4-Pt, possibly due to the spatial separation of the redu...
Graphitic carbon nitride (g-C3N4) is a visible light photocatalyst, limited by low activity mainly caused by rapid recombination of charge carriers. In the present work, honeycomb-like g-C3N4 was synthesized via thermal condensation of urea with addition of water at 450 °C for 1 h. Prolonging the condensation time caused the morphology of g-C3N4 to change from a porous honeycomb structure to a ...
Graphitic-C3N4(g-C3N4), a low-cost visible-light-driven photocatalyst, was used for the photocatalytic oxidation of aqueous methylene blue (MB) in the dark with Sr4Al14O25:(Eu,Dy) assistance. The Sr4Al14O25:(Eu,Dy)/g-C3N4 photocatalysts were fabricated through the ultrasonic dispersion method. The commercial Sr4Al14O25:(Eu,Dy) phosphor was used as a long afterglow supplier for exciting g-C3N4 i...
A Ti species modified g-C3N4 photocatalyst was synthesized via an in situ hydrothermal route and the subsequent low-temperature calcination. The hydrothermal process results in not only the fabrication of TiO2/g-C3N4 heterojunctions, but also the coordination between Ti species and g-C3N4, which are verified by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrical r...
The g-C3N4-coupling TiO2 photocatalysts with controllable particle size as well as the interface contact were prepared by a general nonaqueous sol-gel method. The structural and morphological features of g-C3N4/TiO2 were investigated through the X-ray diffraction, Fourier transformed infrared spectra, scanning electron microscopy and transmission electron microscopy, respectively. It is found t...
An in situ chemical synthetic approach has been designed for the fabrication of a covalently coupled hybrid consisting of graphitic carbon nitride (g-C3N4) with reduced graphene oxide (rGO) with differing g-C3N4/rGO ratio. The epoxy groups of graphene oxide (GO) undergo a nucleophilic substitution reaction with dicyandiamide (C2H4N4) to form the C2H4N4-GO composite via a covalent C-N bond, and ...
As a potential visible-light photocatalyst, the photocatalytic performance of the bulk g-C3N4 synthesized by heating melamine (denote as g-C3N4-M) is limited due to its low specific surface area and the high recombination rate of the photo-induced electron-hole pair. In this paper, a novel g-C3N4-M nanosheet (g-C3N4-MN) obtained from the bulk g-C3N4-M through a thermal exploitation method is em...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید