نتایج جستجو برای: Minimum dominating distance signless Laplacian energy
تعداد نتایج: 1043112 فیلتر نتایج به سال:
Let G be a simple connected graph. The transmission of any vertex v of a graph G is defined as the sum of distances of a vertex v from all other vertices in a graph G. Then the distance signless Laplacian matrix of G is defined as D^{Q}(G)=D(G)+Tr(G), where D(G) denotes the distance matrix of graphs and Tr(G) is the diagonal matrix of vertex transmissions of G. For a given minimum dominating se...
Let η(G) denote the distance signless Laplacian spectral radius of a connected graph G. In this paper, bounds for the distance signless Laplacian spectral radius of connected graphs are given, and the extremal graph with the minimal distance signless Laplacian spectral radius among the graphs with given vertex connectivity and minimum degree is determined. Furthermore, the digraph that minimize...
Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...
In 1962, Erdős gave a sufficient condition for Hamilton cycles in terms of the vertex number, edge number, and minimum degree of graphs which generalized Ore’s theorem. One year later, Moon and Moser gave an analogous result for Hamilton cycles in balanced bipartite graphs. In this paper we present the spectral analogues of Erdős’ theorem and Moon-Moser’s theorem, respectively. Let Gk n be the ...
for a simple connected graph $g$ with $n$-vertices having laplacian eigenvalues $mu_1$, $mu_2$, $dots$, $mu_{n-1}$, $mu_n=0$, and signless laplacian eigenvalues $q_1, q_2,dots, q_n$, the laplacian-energy-like invariant($lel$) and the incidence energy ($ie$) of a graph $g$ are respectively defined as $lel(g)=sum_{i=1}^{n-1}sqrt{mu_i}$ and $ie(g)=sum_{i=1}^{n}sqrt{q_i}$. in th...
Let −→ G be a digraph and A( −→ G) be the adjacency matrix of −→ G . Let D( −→ G) be the diagonal matrix with outdegrees of vertices of −→ G and Q( −→ G) = D( −→ G) + A( −→ G) be the signless Laplacian matrix of −→ G . The spectral radius of Q( −→ G) is called the signless Laplacian spectral radius of −→ G . In this paper, we determine the unique digraph which attains the maximum (or minimum) s...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید