نتایج جستجو برای: Lotharella amoebiformis

تعداد نتایج: 11  

2015
Shigekatsu Suzuki Shu Shirato Yoshihisa Hirakawa Ken-Ichiro Ishida

Many algal groups acquired complex plastids by the uptake of green and red algae through multiple secondary endosymbioses. As a result of gene loss and transfer during the endosymbiotic processes, algal endosymbiont nuclei disappeared in most cases. However, chlorarachniophytes and cryptophytes still possess a relict nucleus, so-called the nucleomorph, of the green and red algal endosymbiont, r...

Journal: رستنیها 2019

A microalgafrom Chlorarachniaceae was found in the shallow runoffs of south Tehran. Morphological and intracellular structures were studied which in accordance with the identification key (Hirakawa et al. 2011), it is found to be a new species for Iran called Amorphochlora amoebiformis (Ishida & Y. Hara) Ishida, Yabuki & S. Ota. This algahas been derived and ...

Journal: :Protist 2012
Shuhei Ota Daniel Vaulot

A new chlorarachniophyte Lotharella reticulosa sp. nov. is described from a culture isolated from the Mediterranean Sea. This strain is maintained as strain RCC375 at the Roscoff Culture Collection, France. This species presents a multiphasic life cycle: vegetative cells of this species were observed to be coccoid, but amoeboid cells with filopodia and globular suspended cells were also present...

2011
Yoshihisa Hirakawa Alexis Howe Erick R. James Patrick J. Keeling

Chlorarachniophytes are marine unicellular algae that possess secondary plastids of green algal origin. Although chlorarachniophytes are a small group (the phylum of Chlorarachniophyta contains 14 species in 8 genera), they have variable and complex life cycles that include amoeboid, coccoid, and/or flagellate cells. The majority of chlorarachniophytes possess two or more cell types in their li...

2014
Yi Yang Motomichi Matsuzaki Fumio Takahashi Lei Qu Hisayoshi Nozaki

The plastids of chlorarachniophytes were derived from an ancestral green alga via secondary endosymbiosis. Thus, genes from the "green" lineage via secondary endosymbiotic gene transfer (EGT) are expected in the nuclear genomes of the Chlorarachniophyta. However, several recent studies have revealed the presence of "red" genes in their nuclear genomes. To elucidate the origin of such "red" gene...

2016
Goro Tanifuji John M. Archibald Tetsuo Hashimoto

Chlorarachniophyte algae possess four DNA-containing compartments per cell, the nucleus, mitochondrion, plastid and nucleomorph, the latter being a relic nucleus derived from a secondary endosymbiont. While the evolutionary dynamics of plastid and nucleomorph genomes have been investigated, a comparative investigation of mitochondrial genomes (mtDNAs) has not been carried out. We have sequenced...

Journal: :Molecular biology and evolution 2001
P J Keeling

In recent years, the increased sampling of protein-coding genes from diverse eukaryotes has revealed that many aspects of each gene tree are at odds with other phylogenies. This has led to the belief that each gene tree has unique strengths and weaknesses, suggesting that an accurate picture of eukaryotic relationships will be achieved only through comparative phylogeny using several different ...

Journal: :Molecular biology and evolution 2003
John M Archibald David Longet Jan Pawlowski Patrick J Keeling

Ubiquitin is a 76 amino acid protein with a remarkable degree of evolutionary conservation. Ubiquitin plays an essential role in a large number of eukaryotic cellular processes by targeting proteins for proteasome-mediated degradation. Most ubiquitin genes are found as head-to-tail polymers whose products are posttranslationally processed to ubiquitin monomers. We have characterized polyubuiqui...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید