نتایج جستجو برای: Lorentzian space form

تعداد نتایج: 1142687  

Journal: :bulletin of the iranian mathematical society 2011
s. shu a. yi han

We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k

Journal: :bulletin of the iranian mathematical society 2013
f. pashaie s.m.b. kashani

we study connected orientable spacelike hypersurfaces $x:m^{n}rightarrowm_q^{n+1}(c)$, isometrically immersed into the riemannian or lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~l_kx=ax+b$,~ where $l_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $h_{k+1}$ of the hypersurface for a fixed integer $0leq k

Journal: :iranian journal of science and technology (sciences) 2010
m. tosun

in this paper, the lorentzian version of beltrami-euler formula is investigated in 1n . initially,the first fundamental form and the metric coefficients of generalized timelike ruled surface are calculated and by the help of the christoffel symbols, riemann-christoffel curvatures are obtained. thus, the curvatures of spacelike and timelike tangential sections of generalized timelike ruled surf...

Journal: :Communications of the Korean Mathematical Society 2006

Journal: :Communications of the Korean Mathematical Society 2010

2014
Shichang Shu Junfeng Chen

Let N p (c) be an (n+p)-dimensional connected Lorentzian space form of constant sectional curvature c and φ : M → N p (c) an n-dimensional spacelike submanifold in N p (c). The immersion φ : M → N p (c) is called a Willmore spacelike submanifold in N p (c) if it is a critical submanifold to the Willmore functional W (φ) = ∫

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید