نتایج جستجو برای: Linearized operator $L_k$
تعداد نتایج: 103020 فیلتر نتایج به سال:
we study connected orientable spacelike hypersurfaces $x:m^{n}rightarrowm_q^{n+1}(c)$, isometrically immersed into the riemannian or lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~l_kx=ax+b$,~ where $l_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $h_{k+1}$ of the hypersurface for a fixed integer $0leq k
Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...
We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k
biharmonic surfaces in euclidean space $mathbb{e}^3$ are firstly studied from a differential geometric point of view by bang-yen chen, who showed that the only biharmonic surfaces are minimal ones. a surface $x : m^2rightarrowmathbb{e}^{3}$ is called biharmonic if $delta^2x=0$, where $delta$ is the laplace operator of $m^2$. we study the $l_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...
The full gyrokinetic electrostatic linearized Landau collision operator is calculated including the equilibrium operator, which represents the effect of collisions between gyrokinetic Maxwellian particles. First, the equilibrium operator describes energy exchange between different plasma species, which is important in multiple ion-species plasmas. Second, the equilibrium operator describes drag...
A new coercivity estimate on the spectral gap of the linearized Boltzmann collision operator for multiple species is proved. The assumptions on the collision kernels include hard and Maxwellian potentials under Grad’s angular cut-off condition. Two proofs are given: a non-constructive one, based on the decomposition of the collision operator into a compact and a coercive part, and a constructiv...
Abstract. The Balescu-Lenard equation from plasma physics is widely considered to include a highly accurate correction to Landau’s fundamental collision operator. Yet so far it has seen very little mathematical study. We perform an extensive linearized analysis of this equation, which includes determining the asymptotic behavior of the new components of the linearized operator and establishing ...
Linearized dynamics models for manipulators are useful in robot analysis, motion planning, and control applications. In this paper we use techniques from the spatial operator algebra to obtain closed form operator expressions for two types of linearized dynamics models, the Linearized Inverse and Forward Dynamics Models. We rst develop spatially recursive algorithms of O(n) and O(n) complexity ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید