نتایج جستجو برای: Lie‎ Derivations

تعداد نتایج: 52250  

Journal: :journal of linear and topological algebra (jlta) 0
s ebrahimi payame noor university

let x be a banach space of dimx > 2 and b(x) be the space of bounded linear operators on x. if l : b(x) → b(x) be a lie higher derivation on b(x), then there exists an additive higher derivation d and a linear map τ : b(x) → fi vanishing at commutators [a, b] for all a, b ∈ b(x) such that l = d + τ

After introducing double derivations of $n$-Lie algebra $L$ we‎ ‎describe the relationship between the algebra $mathcal D(L)$ of double derivations and the usual‎ ‎derivation Lie algebra $mathcal Der(L)$‎. ‎In particular‎, ‎we prove that the inner derivation algebra $ad(L)$‎ ‎is an ideal of the double derivation algebra $mathcal D(L)$; we also show that if $L$ is a perfect $n$-Lie algebra‎ ‎wit...

Journal: :bulletin of the iranian mathematical society 2015
a. r. janfada‎ h. saidi m. mirzavaziri

let $mathcal{a}$ be a $c^*$-algebra and $z(mathcal{a})$ the‎ ‎center of $mathcal{a}$‎. ‎a sequence ${l_{n}}_{n=0}^{infty}$ of‎ ‎linear mappings on $mathcal{a}$ with $l_{0}=i$‎, ‎where $i$ is the‎ ‎identity mapping‎ ‎on $mathcal{a}$‎, ‎is called a lie higher derivation if‎ ‎$l_{n}[x,y]=sum_{i+j=n} [l_{i}x,l_{j}y]$ for all $x,y in  ‎mathcal{a}$ and all $ngeqslant0$‎. ‎we show that‎ ‎${l_{n}}_{n...

 Motivated by the intensive and powerful works concerning additive‎ ‎mappings of operator algebras‎, ‎we mainly study Lie-type higher‎ ‎derivations on operator algebras in the current work‎. ‎It is shown‎ ‎that every Lie (triple-)higher derivation on some classical operator‎ ‎algebras is of standard form‎. ‎The definition of Lie $n$-higher‎ ‎derivations on operator algebras and related pot...

Journal: :bulletin of the iranian mathematical society 0
s. sheikh-mohseni department of mathematics‎, ‎mashhad branch‎, ‎islamic azad university‎, ‎mashhad‎, ‎iran. f. saeedi department of mathematics‎, ‎mashhad branch‎, ‎islamic azad university‎, ‎mashhad‎, ‎iran.

‎let $l$ be a lie algebra‎, ‎$mathrm{der}(l)$ be the set of all derivations of $l$ and $mathrm{der}_c(l)$ denote the set of all derivations $alphainmathrm{der}(l)$ for which $alpha(x)in [x,l]:={[x,y]vert yin l}$ for all $xin l$‎. ‎we obtain an upper bound for dimension of $mathrm{der}_c(l)$ of the finite dimensional nilpotent lie algebra $l$ over algebraically closed fields‎. ‎also‎, ‎we classi...

Journal: :bulletin of the iranian mathematical society 2014
d. han

motivated by the intensive and powerful works concerning additive‎ ‎mappings of operator algebras‎, ‎we mainly study lie-type higher‎ ‎derivations on operator algebras in the current work‎. ‎it is shown‎ ‎that every lie (triple-)higher derivation on some classical operator‎ ‎algebras is of standard form‎. ‎the definition of lie $n$-higher‎ ‎derivations on operator algebras and related pote...

‎Let $L$ be a Lie algebra‎, ‎$mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$‎. ‎We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields‎. ‎Also‎, ‎we classi...

N. Ghobadipour

A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

Let $X$ be a Banach space of $dim X > 2$ and $B(X)$ be the space of bounded linear operators on X. If $L : B(X)to B(X)$ be a Lie higher derivation on $B(X)$, then there exists an additive higher derivation $D$ and a linear map $tau : B(X)to FI$ vanishing at commutators $[A, B]$ for all $A, Bin B(X)$ such that $L = D + tau$.

Journal: :international journal of nonlinear analysis and applications 2010
n. ghobadipour

a unital $c^*$ -- algebra $mathcal a,$ endowed withthe lie product $[x,y]=xy- yx$ on $mathcal a,$ is called a lie$c^*$ -- algebra. let $mathcal a$ be a lie $c^*$ -- algebra and$g,h:mathcal a to mathcal a$ be $bbb c$ -- linear mappings. a$bbb c$ -- linear mapping $f:mathcal a to mathcal a$ is calleda lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید