نتایج جستجو برای: Levenberg-Marquardt algorithm

تعداد نتایج: 754544  

2014
Young-tae Kwak Ji-won Hwang Cheol-jung Yoo

In this paper, a new adjustment to the damping parameter of the Levenberg-Marquardt algorithm is proposed to save training time and to reduce error oscillations. The damping parameter of the Levenberg-Marquardt algorithm switches between a gradient descent method and the Gauss-Newton method. It also affects training speed and induces error oscillations when a decay rate is fixed. Therefore, our...

Journal: :EURASIP Journal on Advances in Signal Processing 2021

Abstract In this paper, we propose a distributed algorithm for sensor network localization based on maximum likelihood formulation. It relies the Levenberg-Marquardt where computations are among different computational agents using message passing, or equivalently dynamic programming. The resulting provides good accuracy, and it converges to same solution as its centralized counterpart. Moreove...

2016
Murat Kayri

The objective of this study is to compare the predictive ability of Bayesian regularization with Levenberg–Marquardt Artificial Neural Networks. To examine the best architecture of neural networks, the model was tested with one-, two-, three-, four-, and five-neuron architectures, respectively. MATLAB (2011a) was used for analyzing the Bayesian regularization and Levenberg–Marquardt learning al...

2009
Pedro Davalos

1 – Introduction Parameter estimation for function optimization is a well established problem in computing, as there are countless applications in practice. For this work, we will focus specifically in implementing a distributed and parallel implementation of the Levenberg Marquardt algorithm, which is a well established numerical solver for function approximation given a limited data set. Para...

2009
Mohammad Bagher Tavakoli

In this paper a modification on Levenberg-Marquardt algorithm for MLP neural network learning is proposed. The proposed algorithm has good convergence. This method reduces the amount of oscillation in learning procedure. An example is given to show usefulness of this method. Finally a simulation verifies the results of proposed method. Keywords—Levenberg-Marquardt, modification, neural network,...

2013
Nazri Mohd Nawi Abdullah Khan Mohammad Zubair Rehman

Back propagation neural network (BPNN) algorithm is a widely used technique in training artificial neural networks. It is also a very popular optimization procedure applied to find optimal weights in a training process. However, traditional back propagation optimized with Levenberg marquardt training algorithm has some drawbacks such as getting stuck in local minima, and network stagnancy. This...

Journal: :civil engineering infrastructures journal 0
fatemeh barzegari instructor of agricultural department, payam noor university, iran. mohsen yousefi m.sc., faculty of natural resources, yazd university, iran ali talebi associate professor, faculty of natural resources, yazd university, iran.

the aim of this study was to estimate suspended sediment by the ann model, dt with cart algorithm and different types of src, in ten stations from the lorestan province of iran. the results showed that the accuracy of ann with levenberg-marquardt back propagation algorithm is more than the two other models, especially in high discharges. comparison of different intervals in models showed that r...

2001
Serdar Iplikci

This report presents the studies carried out on two modifications suggested in the literature for Levenberg-Marquardt algorithm. The modifications are applicable to feed-forward neural networks. One modification [18], made on performance index, reduces computational complexity of the Levenberg-Marquardt algorithm, while the other one [17], made on calculation of the gradient information, improv...

2008
Tahseen Ahmed Jilani Cemal Ardil

Financial forecasting is an example of signal processing problems. A number of ways to train/learn the network are available. We have used Levenberg-Marquardt algorithm for error back-propagation for weight adjustment. Pre-processing of data has reduced much of the variation at large scale to small scale, reducing the variation of training data. Keywords— Gradient descent method, jacobian matri...

2004
Tahseen Ahmed Jilani Cemal Ardil

Financial forecasting is an example of signal processing problems. A number of ways to train/learn the network are available. We have used Levenberg-Marquardt algorithm for error back-propagation for weight adjustment. Pre-processing of data has reduced much of the variation at large scale to small scale, reducing the variation of training data. Keywords— Gradient descent method, jacobian matri...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید