نتایج جستجو برای: Leaf development
تعداد نتایج: 1491100 فیلتر نتایج به سال:
Leaf senescence, the final stage of leaf development, is a complex and highly regulated process that involves a series of coordinated actions at the cellular, tissue, organ, and organism levels under the control of a highly regulated genetic program. In the last decade, the use of mutants with different levels of leaf senescence phenotypes has led to the cloning and functional characterizations...
Shoots are characterized by indeterminate growth resulting from divisions of undifferentiated cells in the central region of the shoot apical meristem. These cells give rise to peripheral derivatives from which lateral organ initials are recruited. During initial stages of cell recruitment, the three-dimensional form of lateral organs is specified. Lateral organs such as leaves develop and diff...
For genetic analysis of mechanisms of leaf morphogenesis, we chose Arabidopsis thaliana (L.) Heynh. as a model for leaf development in dicotyledonous plants. Leaves of the angustifolia mutant were the same length as but narrower and thicker than wild-type leaves. The total number of cells in leaf blades of angustifolia plants was the same as in the wild type. At the cellular level in the angust...
The principles underlying the formation of leaf veins have long intrigued developmental biologists. In leaves, networks of vascular precursor procambial cells emerge from seemingly homogeneous subepidermal tissue through the selection of anatomically inconspicuous preprocambial cells. Understanding dynamics of procambium formation has been hampered by the difficulty of observing the process in ...
The normal biological function of leaves, such as intercepting light and exchanging gases, relies on proper differentiation of adaxial and abaxial polarity. KANADI (KAN) genes, members of the GARP family, are key regulators of abaxial identity in leaf morphogenesis. This study identified a mutant allele (apum23-3) of APUM23, which encodes a Pumilio/PUF domain protein and acts as an enhancer of ...
To identify genes involved in meristem function we have designed a screen for temperature-sensitive mutations that cause a conditional arrest of early shoot development in Arabidopsis. We describe the characterization of three mutations, arrested development (add) 1, 2 and 3. At the restrictive temperature the add1 and add2 mutations disrupt apical meristem function as assayed by leaf initiatio...
The phytohormone auxin is a key regulator of plant growth and development that exerts its functions through F-box receptors. Arabidopsis (Arabidopsis thaliana) has four partially redundant of these receptors that comprise the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX1 auxin receptor (TAAR) clade. Recent studies have shown that the microRNA miR393 regulates the expression of different ...
Plants initiate leaf senescence to relocate nutrients and energy from aging leaves to developing tissues or storage organs for growth, reproduction, and defense. Leaf senescence, the final stage of leaf development, is regulated by various environmental stresses, developmental cues, and endogenous hormone signals. Jasmonate (JA), a lipid-derived phytohormone essential for plant defense and plan...
Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis.
Phytochrome-mediated perception of the ratio of red to far-red wavelengths in the ambient light environment is fundamental to plant growth and development. Such monitoring enables plants to detect neighboring vegetation and initiate avoidance responses, thus conferring considerable selective advantage. The shade avoidance syndrome in plants is characterized by elongation growth and early flower...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید