نتایج جستجو برای: Lanczos Bidiagonalization
تعداد نتایج: 1448 فیلتر نتایج به سال:
The harmonic Lanczos bidiagonalization method can be used to compute the smallest singular triplets of a large matrix A. We prove that for good enough projection subspaces harmonic Ritz values converge if the columns of A are strongly linearly independent. On the other hand, harmonic Ritz values may miss some desired singular values when the columns of A are almost linearly dependent. Furthermo...
New restarted Lanczos bidiagonalization methods for the computation of a few of the largest or smallest singular values of a large matrix are presented. Restarting is carried out by augmentation of Krylov subspaces that arise naturally in the standard Lanczos bidiagonalization method. The augmenting vectors are associated with certain Ritz or harmonic Ritz vectors. Computed examples show the ne...
This paper proposes a harmonic Lanczos bidiagonalization method for computing some interior singular triplets of large matrices. It is shown that the approximate singular triplets are convergent if a certain Rayleigh quotient matrix is uniformly bounded and the approximate singular values are well separated. Combining with the implicit restarting technique, we develop an implicitly restarted ha...
Lanczos bidiagonalization is a competitive method for computing a partial singular value decomposition of a large sparse matrix, that is, when only a subset of the singular values and corresponding singular vectors are required. However, a straightforward implementation of the algorithm has the problem of loss of orthogonality between computed Lanczos vectors, and some reorthogonalization techn...
A matrix-free algorithm, IRLANB, for the efficient computation of the smallest singular triplets of large and possibly sparse matrices is described. Key characteristics of the approach are its use of Lanczos bidiagonalization, implicit restarting, and harmonic Ritz values. The algorithm also uses a deflation strategy that can be applied directly on Lanczos bidiagonalization. A refinement postpr...
Low-rank approximation of large and/or sparse matrices is important in many applications, and the singular value decomposition (SVD) gives the best low-rank approximations with respect to unitarily-invariant norms. In this paper we show that good low-rank approximations can be directly obtained from the Lanczos bidiagonalization process applied to the given matrix without computing any SVD. We ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید