نتایج جستجو برای: LSCF
تعداد نتایج: 127 فیلتر نتایج به سال:
The work is supported by US DOE SECA Core Technology Program under Grant No. DENT-0006557. We thank SHaRE, ORNL for TEM instrumentation and sample preparation. One of the reasons that LaxSr1−xCoyFe1−yO3−δ (LSCF) based cathodes show much better performance than those based on LaxSr1-xMnO3-δ (LSM) is that LSCF has much higher ionic and electronic conductivities than LSM, significantly extending t...
Percolation theory is generalized to predict the effective properties of specific solid oxide fuel cell composite electrodes, which consist of a pure ion conducting material (e.g., YSZ or GDC) and a mixed electron and ion conducting material (e.g., LSCF, LSCM or CeO2). The investigated properties include the probabilities of an LSCF particle belonging to the electron and ion conducting paths, p...
La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) powders with different particle sizes, synthesized through a citrate complexation method and a gel-casting technique, are used to fabricate porous LSCF cathodes with graded microstructures via tape casting. To create porous electrodes with desired porosity and pore structures, graphite and starch are used as pore former for different layers of the graded cathode....
A BaO infiltrated La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode shows remarkable tolerance and resistance towards chromium via the formation of BaCrO4 instead of SrCrO4 on the electrode surface, preventing the excess Sr deficiency at the A-site of LSCF perovskite and thus mitigating the Cr poisoning effect.
Perovskite oxides La1−xSrxCo1−yFeyO3–δ (LSCF) have been extensively investigated and developed as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs) due to mixed ionic–electronic conductivity and high electrooxygen reduction activity for oxygen reduction. Recent literature investigations show that cathode performances can be improved by metal surface modification o...
In this study the characteristics of two different kinds of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) powders, one in-house synthesized powder by a co-precipitation method and another one purchased from Fuel Cell Materials Co. (FCM Co., USA), were compared. The co-precipitated powder was prepared by using ammonium carbonate as precipitant with a NH4+/NO3- molar ratio of 2 and calcination at 1000C for 1 h....
Among all the Quantum Mechanics/Molecular Mechanics (QM/MM) methods available to describe large molecular systems, the Local Self-Consistent Field/MM (LSCF/MM) one uses frozen doubly occupied Strictly Localized Bonding Orbital (SLBO) to connect the QM fragment to the one treated at the MM level. This approach is correct as long as the QM part is large enough to minimize the artifacts that could...
در این پژوهش ساختار اکسیدی و پروسکایتی (LSCF) LaxSr1-xCoyFe1-yO3 به وسیلهی روش سنتز به کمک گلایسین (Glycine Nitrate Process-GNP) به منظور استفاده در پیل سوختی اکسید جامد سنتز شد. نتایج حاصل از آنالیز پراش پرتو ایکس (X-ray Diffraction-XRD) نشان دهنده حضور ماده LSCF سنتز شده به صورت تکفاز است. پودر LSCF سنتز شده به صورت جداگانه و همچنین پس از مخلوط شدن با سریای آلاییده شده با گادولونیم (GDC) به...
The perovskite nanopowders of lanthanum strontium cobalt ferrite (LSCF) have been synthesized using the alginate mediated ion-exchange process. This perovskite-based material is a promising cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs) due to its high electrical conductivity, low polarizability, catalytic activity oxygen reduction, enhanced chemical stability at an elev...
Tar formation during biomass gasification causes several operational problems, besides limiting the downstream application of syngas produced. The development an efficient catalyst for tar reforming at mild temperature is targeted. In this study, La-based perovskite (La0.6Sr0.4Co0.2Fe0.8O3-δ)-supported Ni materials have been synthesized through wetness impregnation (Ni/LSCF) and one-pot sol-gel...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید