نتایج جستجو برای: Kostka coefficients
تعداد نتایج: 105188 فیلتر نتایج به سال:
Given a partition λ and a composition β, the stretched Kostka coefficient Kλβ(n) is the map n 7→ Knλ,nβ sending each positive integer n to the Kostka coefficient indexed by nλ and nβ. Derksen and Weyman [DW02] have shown that stretched Kostka coefficients are polynomial functions of n. King, Tollu, and Toumazet have conjectured that these polynomials always have nonnegative coefficients [KTT04]...
Let K(q, t) = K λµ (q, t) λ,µ be the Macdonald q, t-Kostka matrix and K(t) = K(0, t) be the matrix of the Kostka-Foulkes polynomials K λµ (t). In this paper we present a new proof of the polynomiality of the q, t-Kostka coefficients that is both short and elementary. More precisely, we derive that K(q, t) has entries in Z[q, t] directly from the fact that the matrix K(t) −1 has entries in Z[t]....
0
We show that some of the main structural constants for symmetric functions (Littlewood-Richardson coefficients, Kronecker coefficients, plethysm coefficients, and the Kostka–Foulkes polynomials) share symmetries related to the operations of taking complements with respect to rectangles and adding rectangles.
This is a combinatorial study of the Poincaré polynomials of isotypic components of a natural family of graded GL(n)-modules supported in the closure of a nilpotent conjugacy class. These polynomials generalize the Kostka-Foulkes polynomials and are q-analogues of Littlewood-Richardson coefficients. The coefficients of two-column Macdonald-Kostka polynomials also occur as a special case. It is ...
Combinatorial objects called rigged configurations give rise to q-analogues of certain Littlewood-Richardson coefficients. The Kostka-Foulkes polynomials and twocolumn Macdonald-Kostka polynomials occur as special cases. Conjecturally these polynomials coincide with the Poincaré polynomials of isotypic components of certain graded GL(n)-modules supported in a nilpotent conjugacy class closure i...
Kostka numbers and Littlewood-Richardson coefficients play an essential role in the representation theory of the symmetric groups and the special linear groups. There has been a significant amount of interest in their computation ([1], [10], [11], [2], [3]). The issue of their computational complexity has been a question of folklore, but was asked explicitly by E. Rassart [10]. We prove that th...
Macdonald defined two-parameter Kostka functions Kλμ(q, t) where λ, μ are partitions. The main purpose of this paper is to extend his definition to include all compositions as indices. Following Macdonald, we conjecture that also these more general Kostka functions are polynomials in q and t with non-negative integers as coefficients. If q = 0 then our Kostka functions are Kazhdan-Lusztig polyn...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید