نتایج جستجو برای: K-modes

تعداد نتایج: 483007  

2009
Sarra Ben Hariz Zied Elouedi Khaled Mellouli

The belief K-modes method (BKM) approach is a new clustering technique handling uncertainty in the attribute values of objects in both the cluster construction task and the classification one. Like the standard version of this method, the BKM results depend on the chosen initial modes. So, one selection method of initial modes is developed, in this paper, aiming at improving the performances of...

2014
S. Sumathi M. M. Gowthul Alam

Most of the existing clustering approaches are applicable to purely numerical or categorical data only, but not the both. In general, it is a nontrivial task to perform clustering on mixed data composed of numerical and categorical attributes because there exists an awkward gap between the similarity metrics for categorical and numerical data. This paper therefore presents a general clustering ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور استان تهران - دانشکده علوم انسانی 1390

this study attempted to explore if teaching english collocations through two different modes of awareness-raising and input flooding has any possible differential effect on immediate retention as well as retention in a delayed assessment. it also compared the possible differential effect of teaching english collocations implicitly and explicitly on actively using the items in writing. m...

Journal: :International Journal of Computer Applications 2015

The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...

Journal: :Expert Systems with Applications 2011

2006
Zengyou He Shengchun Deng Xiaofei Xu

In this paper, we study clustering with respect to the k-modes objective function, a natural formulation of clustering for categorical data. One of the main contributions of this paper is to establish the connection between kmodes and k-median, i.e., the optimum of k-median is at most the twice the optimum of k-modes for the same categorical data clustering problem. Based on this observation, w...

2005
Ching-San Chiang Shu-Chuan Chu Yi-Chih Hsin Ming-Hui Wang M. H. WANG

K-means algorithm has been shown to be an effective and efficient algorithm for clustering. However, the k-means algorithm is developed for numerical data only. It is not suitable for the clustering of non-numerical data. K-modes algorithm has been developed for clustering categorical objects by extending from the k-means algorithm. However, no one applies this technique for classification of c...

Journal: :CoRR 2014
Weiran Wang Miguel Á. Carreira-Perpiñán

In addition to finding meaningful clusters, centroid-based clustering algorithms such as K-means or mean-shift should ideally find centroids that are valid patterns in the input space, representative of data in their cluster. This is challenging with data having a nonconvex or manifold structure, as with images or text. We introduce a new algorithm, Laplacian K-modes, which naturally combines t...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید