نتایج جستجو برای: Jacobi polynomial
تعداد نتایج: 106152 فیلتر نتایج به سال:
In this paper, we present the constrained Jacobi polynomial which is equal to the constrained Chebyshev polynomial up to constant multiplication. For degree n = 4, 5, we find the constrained Jacobi polynomial, and for n ≥ 6, we present the normalized constrained Jacobi polynomial which is similar to the constrained Chebyshev polynomial.
A Jacobi polynomial was introduced by Ozeki. It corresponds to the codes over F2. Later, Bannai and Ozeki showed how to construct Jacobi forms with various index using a Jacobi polynomial corresponding to the binary codes. It generalizes Broué-Enguehard map. In this paper, we study Jacobi polynomial which corresponds to the codes over F2f . We show how to construct Jacobi forms with various ind...
For all hyperbolic polynomials we proved in [11] a Lipschitz estimate of Jacobi matrices built by orthogonalizing polynomials with respect to measures in the orbit of classical Perron-Frobenius-Ruelle operators associated to hyperbolic polynomial dynamics (with real Julia set). Here we prove that for all sufficiently hyperbolic polynomials this estimate becomes exponentially better when the dim...
Among all lattice reduction algorithms, the LLL algorithm is the first and perhaps the most famous polynomial time algorithm, and it is widely used in many applications. In 2012, S. Qiao [24] introduced another algorithm, the Jacobi method, for lattice basis reduction. S. Qiao and Z. Tian [25] improved the Jacobi method further to be polynomial time but only produces a Quasi-Reduced basis. In t...
In this paper, we exhibit two methods to numerically solve the fractional integro differential equations and then proceed to compare the results of their applications on different problems. For this purpose, at first shifted Jacobi polynomials are introduced and then operational matrices of the shifted Jacobi polynomials are stated. Then these equations are solved by two methods: Caputo fractio...
comparative study on solving fractional differential equations via shifted jacobi collocation method
in this paper, operational matrices of riemann-liouville fractional integration and caputo fractional differentiation for shifted jacobi polynomials are considered. using the given initial conditions, we transform the fractional differential equation (fde) into a modified fractional differential equation with zero initial conditions. next, all the existing functions in modified differential equ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید