نتایج جستجو برای: Increasing Gauss integration points

تعداد نتایج: 954817  

This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive integration matrix for this dimension. This approach shows that with less number of points, we can approximate the solution with more accuracy. The numerical results of the examples are displayed.

د. میرزایی ل. هوشنگیان

This paper gives an ecient numerical method for solving the nonlinear systemof Volterra-Fredholm integral equations. A Legendre-spectral method based onthe Legendre integration Gauss points and Lagrange interpolation is proposedto convert the nonlinear integral equations to a nonlinear system of equationswhere the solution leads to the values of unknown functions at collocationpoints.

one of the simplest numerical integration method which provides a large saving in computational efforts, is the well known one-point Gauss quadrature which is widely used for 4 nodes quadrilateral elements. On the other hand, the biggest disadvantage to one-point integration is the need to control the zero energy modes, called hourglassing modes, which arise. The efficiency of four different an...

2005
Bin Yue Murthy N. Guddati

This paper focuses on increasing the accuracy of low-order four-node quadrilateral finite elements for the transient analysis of wave propagation. Modified integration rules, originally proposed for time-harmonic problems, provide the basis for the proposed technique. The modified integration rules shift the integration points to locations away from the conventional Gauss or Gauss-Lobatto integ...

Journal: :نظریه تقریب و کاربرد های آن 0
ل. هوشنگیان دانشگاه آزاد واحد دزفول د. میرزایی دانشکده ریاضی دانشگاه اصفهان

this paper gives an ecient numerical method for solving the nonlinear systemof volterra-fredholm integral equations. a legendre-spectral method based onthe legendre integration gauss points and lagrange interpolation is proposedto convert the nonlinear integral equations to a nonlinear system of equationswhere the solution leads to the values of unknown functions at collocationpoints.

2003
Murthy N. Guddati Bin Yue

This paper describes a simple but effective technique for reducing dispersion errors in finite element solutions of timeharmonic wave propagation problems. The method involves a simple shift of the integration points to locations away from conventional Gauss or Gauss–Lobatto integration points. For bilinear rectangular elements, such a shift results in fourth-order accuracy with respect to disp...

2009

In this paper, we present new Gaussian integration schemes for the efficient and accurate evaluation of weak form integrals that arise in enriched finite element methods. For discontinuous functions we present an algorithm for the construction of Gauss-like quadrature rules over arbitrarily-shaped elements without partitioning. In case of singular integrands, we introduce a new polar transforma...

A Alijani, A Darvizeh F Mottaghian

In this paper, the extended finite element method (XFEM) is employed to investigate the statics and vibration problems of cracked isotropic bars and beams. Three kinds of elements namely the standard, the blended and the enriched elements are utilized to discretize the structure and model cracks. Two techniques referred as the increase of the number of Gauss integration points and the rectangle...

1998
J. S. HESTHAVEN

The electrostatic interpretation of the Jacobi–Gauss quadrature points is exploited to obtain interpolation points suitable for approximation of smooth functions defined on a simplex. Moreover, several new estimates, based on extensive numerical studies, for approximation along the line using Jacobi–Gauss–Lobatto quadrature points as the nodal sets are presented. The electrostatic analogy is ex...

2011
Bin Jia Ming Xin Yang Cheng

A novel sparse Gauss–Hermite quadrature filter is proposed using a sparse-grid method for multidimensional numerical integration in the Bayesian estimation framework. The conventional Gauss–Hermite quadrature filter is computationally expensive for multidimensional problems, because the number of Gauss–Hermite quadrature points increases exponentially with the dimension. The number of sparse-gr...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید