نتایج جستجو برای: Hyperbolic metric space
تعداد نتایج: 578925 فیلتر نتایج به سال:
We construct one-step iterative process for an α- nonexpansive mapping and a mapping satisfying condition (C) in the framework of a convex metric space. We study △-convergence and strong convergence of the iterative process to the common fixed point of the mappings. Our results are new and are valid in hyperbolic spaces, CAT(0) spaces, Banach spaces and Hilbert spaces, simultaneously.
We describe a new proof of the complete integrability of the two related dynamical systems: the billiard inside the ellipsoid and the geodesic flow on the ellipsoid (in Euclidean, spherical or hyperbolic space). The proof is based on the construction of a metric on the ellipsoid whose nonparameterized geodesics coincide with those of the standard metric. This new metric is induced by the hyperb...
Let (Xi, di), i = 1, 2, be proper geodesic hyperbolic metric spaces. We give a general construction for a " hyperbolic product " X1× h X2 which is itself a proper geodesic hyperbolic metric space and examine its boundary at infinity.
It is a well-known fact that every Riemann surface with negative Euler characteristic admits a hyperbolic metric. But this metric is by no means unique – indeed, there are uncountably many such metrics. In this paper, we study the space of all such hyperbolic structures on a Riemann surface, called the Teichmüller space of the surface. We will show that it is a complete metric space, and that i...
Asymptotic subcone of an unbounded metric space is another metric space, capturing the structure of the original space at infinity. In this paper we define a functional metric space S which is an asymptotic subcone of the hyperbolic plane. This space is a real tree branching at every its point. Moreover, it is a homogeneous metric space such that any real tree with countably many vertices can b...
It was proved by M. Bonk, J. Heinonen and P. Koskela that the quasihyperbolic metric hyperbolizes (in the sense of Gromov) uniform metric spaces. In this paper we introduce a new metric that hyperbolizes all locally compact noncomplete metric spaces. The metric is generic in the sense that (1) it can be defined on any metric space; (2) it preserves the quasiconformal geometry of the space; (3) ...
We consider a volume maximization program to construct hyperbolic structures on triangulated 3-manifolds, for which previous progress has lead to consider angle assignments which do not correspond to a hyperbolic metric on each simplex. We show that critical points of the generalized volume are associated to geometric structures modeled on the extended hyperbolic space – the natural extension o...
The notion of Gromov hyperbolicity was introduced by Gromov in the setting of geometric group theory [G1], [G2], but has played an increasing role in analysis on general metric spaces [BHK], [BS], [BBo], [BBu], and extendability of Lipschitz mappings [L]. In this theory, it is often additionally assumed that the hyperbolic metric space is proper and geodesic (meaning that closed balls are compa...
A large class of explicit hyperbolic monopole solutions can be obtained from JNR instanton data, if the curvature of hyperbolic space is suitably tuned. Here we provide explicit formulae for both the monopole spectral curve and its rational map in terms of JNR data. Examples with platonic symmetry are presented, together with some one-parameter families with cyclic and dihedral symmetries. Thes...
By a hyperbolization of a locally compact non-complete metric space (X, d) we mean equipping X with a Gromov hyperbolic metric dh so that the boundary at infinity ∂∞X of (X, dh) can be identified with the metric boundary ∂X of (X, d) via a quasisymmetric map. The aim of this note is to show that the Gromov hyperbolic metric dh, recently introduced by the author, hyperbolizes the space X. In add...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید