نتایج جستجو برای: Hyper Wiener index
تعداد نتایج: 425343 فیلتر نتایج به سال:
the unitary cayley graph xn has vertex set zn = {0, 1,…, n-1} and vertices u and v areadjacent, if gcd(uv, n) = 1. in [a. ilić, the energy of unitary cayley graphs, linear algebraappl. 431 (2009) 1881–1889], the energy of unitary cayley graphs is computed. in this paperthe wiener and hyperwiener index of xn is computed.
let g and h be two graphs. the corona product g o h is obtained by taking one copy of gand |v(g)| copies of h; and by joining each vertex of the i-th copy of h to the i-th vertex of g,i = 1, 2, …, |v(g)|. in this paper, we compute pi and hyper–wiener indices of the coronaproduct of graphs.
let $g=(v(g),e(g))$ be a simple connected graph with vertex set $v(g)$ and edge set $e(g)$. the (first) edge-hyper wiener index of the graph $g$ is defined as: $$ww_{e}(g)=sum_{{f,g}subseteq e(g)}(d_{e}(f,g|g)+d_{e}^{2}(f,g|g))=frac{1}{2}sum_{fin e(g)}(d_{e}(f|g)+d^{2}_{e}(f|g)),$$ where $d_{e}(f,g|g)$ denotes the distance between the edges $f=xy$ and $g=uv$ in $e(g)$ and $d_{e}(f|g)=s...
Abstract. In this paper Reverse Wiener index, Reverse Detour Wiener index, Reverse Circular Wiener index Reverse Harary index, Reverse Detour Harary index, Reverse Circular Harary index, Reverse Reciprocal Wiener index, Reverse Detour Reciprocal Wiener index, Reverse Circular Reciprocal Wiener index, Reverse Hyper Wiener index, Reverse, Detour Hyper Wiener index, Reverse Circular Hyper Wiener i...
Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge set E(G). The (first) edge-hyper Wiener index of the graph G is defined as: $$WW_{e}(G)=sum_{{f,g}subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=frac{1}{2}sum_{fin E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$ where de(f,g|G) denotes the distance between the edges f=xy and g=uv in E(G) and de(f|G)=∑g€(G)de(f,g|G). In thi...
let $g$ be a simple connected graph. the edge-wiener index $w_e(g)$ is the sum of all distances between edges in $g$, whereas the hyper edge-wiener index $ww_e(g)$ is defined as {footnotesize $w{w_e}(g) = {frac{1}{2}}{w_e}(g) + {frac{1}{2}} {w_e^{2}}(g)$}, where {footnotesize $ {w_e^{2}}(g)=sumlimits_{left{ {f,g} right}subseteq e(g)} {d_e^2(f,g)}$}. in this paper, we present explicit formula fo...
In this paper the Wiener and hyper Wiener index of two kinds of dendrimer graphs are determined. Using the Wiener index formula, the Szeged, Schultz, PI and Gutman indices of these graphs are also determined.
The Wiener index of a connected graph G, denoted by W(G) , is defined as ∑ ( , ) , ∈ ( ) .Similarly, hyper-Wiener index of a connected graph G,denoted by WW(G), is defined as ( ) + ∑ ( , ) , ∈ ( ) .In this paper, we present the explicit formulae for the Wiener, hyper-Wiener and reverse Wiener indices of some graph operations. Using the results obtained here, the exact formulae for Wiener, hyper...
For a connected graph G and an non-empty set S ⊆ V (G), the Steiner distance dG(S) among the vertices of S is defined as the minimum size among all connected subgraphs whose vertex sets contain S. This concept represents a natural generalization of the concept of classical graph distance. Recently, the Steiner Wiener index of a graph was introduced by replacing the classical graph distance used...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید