نتایج جستجو برای: Higher derivations

تعداد نتایج: 991369  

Journal: :bulletin of the iranian mathematical society 2015
a. r. janfada‎ h. saidi m. mirzavaziri

let $mathcal{a}$ be a $c^*$-algebra and $z(mathcal{a})$ the‎ ‎center of $mathcal{a}$‎. ‎a sequence ${l_{n}}_{n=0}^{infty}$ of‎ ‎linear mappings on $mathcal{a}$ with $l_{0}=i$‎, ‎where $i$ is the‎ ‎identity mapping‎ ‎on $mathcal{a}$‎, ‎is called a lie higher derivation if‎ ‎$l_{n}[x,y]=sum_{i+j=n} [l_{i}x,l_{j}y]$ for all $x,y in  ‎mathcal{a}$ and all $ngeqslant0$‎. ‎we show that‎ ‎${l_{n}}_{n...

Journal: :journal of linear and topological algebra (jlta) 0
s ebrahimi payame noor university

let x be a banach space of dimx > 2 and b(x) be the space of bounded linear operators on x. if l : b(x) → b(x) be a lie higher derivation on b(x), then there exists an additive higher derivation d and a linear map τ : b(x) → fi vanishing at commutators [a, b] for all a, b ∈ b(x) such that l = d + τ

Let $mathcal{A}$ be a $C^*$-algebra and $Z(mathcal{A})$ the‎ ‎center of $mathcal{A}$‎. ‎A sequence ${L_{n}}_{n=0}^{infty}$ of‎ ‎linear mappings on $mathcal{A}$ with $L_{0}=I$‎, ‎where $I$ is the‎ ‎identity mapping‎ ‎on $mathcal{A}$‎, ‎is called a Lie higher derivation if‎ ‎$L_{n}[x,y]=sum_{i+j=n} [L_{i}x,L_{j}y]$ for all $x,y in  ‎mathcal{A}$ and all $ngeqslant0$‎. ‎We show that‎ ‎${L_{n}}_{n...

Let $X$ be a Banach space of $dim X > 2$ and $B(X)$ be the space of bounded linear operators on X. If $L : B(X)to B(X)$ be a Lie higher derivation on $B(X)$, then there exists an additive higher derivation $D$ and a linear map $tau : B(X)to FI$ vanishing at commutators $[A, B]$ for all $A, Bin B(X)$ such that $L = D + tau$.

Let $mathfrak{A}$ be a Banach algebra. We say that a sequence ${D_n}_{n=0}^infty$ of continuous operators form $mathfrak{A}$ into $mathfrak{A}$ is a textit{local higher derivation} if to each $ainmathfrak{A}$ there corresponds a continuous higher derivation ${d_{a,n}}_{n=0}^infty$ such that $D_n(a)=d_{a,n}(a)$ for each non-negative integer $n$. We show that if $mathfrak{A}$ is a $C^*$-algebra t...

Journal: :Bulletin of the Australian Mathematical Society 2012

M. Eshaghi R. Farrokhzad S.A.R. Hosseinioun

We say a functional equation () is stable if any function g satisfying the equation () approximatelyis near to true solution of (). Using xed point methods, we investigate approximately higherternary derivations in Banach ternary algebras via the Cauchy functional equationf(1x + 2y + 3z) = 1f(x) + 2f(y) + 3f(z) :

Journal: :bulletin of the iranian mathematical society 2011
m. mirzavaziri

A. Niknam H. Mahdavian Rad

Let  be a Banach algebra. Let  be linear mappings on . First we demonstrate a theorem concerning the continuity of double derivations; especially that all of -double derivations are continuous on semi-simple Banach algebras, in certain case. Afterwards we define a new vocabulary called “-higher double derivation” and present a relation between this subject and derivations and finally give some ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید