نتایج جستجو برای: Hadamard
تعداد نتایج: 6667 فیلتر نتایج به سال:
in this paper, we deal with the subdierential concept onhadamard spaces. flat hadamard spaces are characterized, and nec-essary and sucient conditions are presented to prove that the subdif-ferential set in hadamard spaces is nonempty. proximal subdierentialin hadamard spaces is addressed and some basic properties are high-lighted. finally, a density theorem for subdierential set is establi...
Fej'{e}r Hadamard inequality is generalization of Hadamard inequality. In this paper we prove certain Fej'{e}r Hadamard inequalities for $k$-fractional integrals. We deduce Fej'{e}r Hadamard-type inequalities for Riemann-Liouville fractional integrals. Also as special case Hadamard inequalities for $k$-fractional as well as fractional integrals are given.
In this paper, we deal with the subdierential concept onHadamard spaces. Flat Hadamard spaces are characterized, and nec-essary and sucient conditions are presented to prove that the subdif-ferential set in Hadamard spaces is nonempty. Proximal subdierentialin Hadamard spaces is addressed and some basic properties are high-lighted. Finally, a density theorem for subdierential set is established.
A logic network to produce the sequency ordered Hadamard matrix H based on the property of gray code and orthogonal group codes is developed. The network uses a counter to generate Rademacher function such that the output of H will be in sequency. A general purpose shift register with output logic is used to establish a sequence of period P corresponding to a given value of order m of the Hadam...
In this paper we will prove certain Hadamard and Fejer-Hadamard inequalities for the functions whose nth derivatives are convex by using Caputo k-fractional derivatives. These results have some relationship with inequalities for Caputo fractional derivatives.
hadamard (or complete $cat(0)$) spaces are complete, non-positive curvature, metric spaces. here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. our results extend the standard non-linear ergodic theorems for non-expansive maps on real hilbert spaces, to non-expansive maps on had...
Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.
Making use of a linear operator, which is defined here by means of the Hadamard product (or convolution), we define a subclass $mathcal {T}_{p}(a, c, gamma, lambda; h)$ of meromorphically multivalent functions. The main object of this paper is to investigate some important properties for the class. We also derive many results for the Hadamard roducts of functions belong...
making use of a linear operator, which is defined here by means of the hadamard product (or convolution), we define a subclass $mathcal {t}_{p}(a, c, gamma, lambda; h)$ of meromorphically multivalent functions. the main object of this paper is to investigate some important properties for the class. we also derive many results for the hadamard roducts of functions belong...
Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید