نتایج جستجو برای: Gustafson Kessel
تعداد نتایج: 571 فیلتر نتایج به سال:
A new online clustering method, called E2GK (Evidential Evolving Gustafson-Kessel) is introduced in the theoretical framework of belief functions. The algorithm enables an online partitioning of data streams based on two existing and efficient algorithms: Evidantial cMeans (ECM) and Evolving Gustafson-Kessel (EGK). E2GK uses the concept of credal partition of ECM and adapts EGK, offering a bett...
In recent years, the Fuzzy Relational Database and its queries have gradually become a new research topic. Fuzzy Structured Query Language (FSQL) is used to retrieve the data from fuzzy database because traditional Structured Query Language (SQL) is inefficient to handling uncertain and vague queries. The proposed model provides the facility for naïve users for retrieving relevant results of no...
مدل های خوشه بندی c-means یکی از پرکاربردترین شیوه های طبقه بندی نظارت نشده در آنالیز داده ها به شمار میرود. مدل فازی این روش، یعنی fuzzy c-means، یکی از مشهورترین مدل هایی است که در آن هر داده با یک مقدار درجۀ عضویت بین 0 و 1، به هر یک از خوشه ها اختصاص داده میشود. این مدل خوشه بندی جهت طبقه بندی داده های سنجش از دوری بسیار استفاده شده است. مدل fuzzy c-means از فاصلۀ اقلیدسی جهت خوشه بندی اس...
A new online clustering method called E2GK (Evidential Evolving Gustafson-Kessel) is introduced. This partitional clustering algorithm is based on the concept of credal partition defined in the theoretical framework of belief functions. A credal partition is derived online by applying an algorithm resulting from the adaptation of the Evolving Gustafson-Kessel (EGK) algorithm. Online partitionin...
In this paper an on-line fuzzy identification of Takagi Sugeno fuzzy model is presented. The presented method combines a recursive Gustafson–Kessel clustering algorithm and the fuzzy recursive least squares method. The on-line Gustafson–Kessel clustering method is derived. The recursive equations for fuzzy covariance matrix, its inverse and cluster centers are given. The use of the method is pr...
We propose a type-2 based clustering algorithm to capture data points and attributes relationship embedded in fuzzy subspaces. It is a modification of Gustafson Kessel clustering algorithm through deployment of type-2 fuzzy sets for high dimensional data. The experimental results have shown that type-2 projected GK algorithm perform considerably better than the comparative techniques. General T...
In this paper one presents a new fuzzy clustering algorithm based on a dissimilarity function determined by three parameters. This algorithm can be considered a generalization of the Gustafson-Kessel algorithm for fuzzy clustering.
The Gustafson-Kessel fuzzy clustering algorithm is capable of detecting hyperellipsoidal clusters of different sizes and orientations by adjusting the covariance matrix of data, thus overcoming the drawbacks of conventional fuzzy c-means algorithm. In this paper, an adaptive version of the Gustafson-Kessel algorithm is proposed. The way to adjust the covariance matrix iteratively is introduced ...
In this paper, we propose a Context-based Gustafson-Kessel (CGK) clustering that builds Information Granulation (IG) in the form of fuzzy set. The fundamental idea of this clustering is based on Conditional Fuzzy C-Means (CFCM) clustering introduced by Pedrycz. The proposed clustering develops clusters preserving homogeneity of the clustered patterns associated with the input and output space. ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید