نتایج جستجو برای: Graphene nanoplatelets
تعداد نتایج: 51085 فیلتر نتایج به سال:
Graphene nanoplatelets are shown to electrocatalyse the oxidation of dopamine. Single entity measurements ('nano-impacts') coupled with microdisc voltammetry and UV-visible spectroscopy reveal that adsorption of dopamine and its oxidised product on the graphene nanoplatelets is the key factor causing the observed catalysis. Genetic implications are drawn both for the study of catalysts in gener...
This work aims the functionalization of reduced graphene oxide nanoplatelets with chitosan (G-chitosan) and also with poly(styrenesulfonic acid) (GPSS), thus forming stable, dispersed aqueous solutions. G-chitosan and GPSS solutions allowed the layer-by-layer (LbL) film formation with glucose oxidase (GOx), establishing multilayered nanostructures with elevated control in thickness and morpholo...
Nano-impact chronoamperometric experiments are a powerful technique for simultaneously probing both the potential of zero charge (PZC) and the diffusion coefficient (D0) of graphene nanoplatelets (GNPs). The method provides an efficient general approach to material characterisation. Using nano-impact experiments, capacitative impacts can be seen for graphene nanoplatelets of 15 μm width and 6-8...
Metal oxide nanoparticles supported on graphene exhibit high catalytic activity for oxidation, reduction and coupling reactions. Here we show that pyrolysis at 900 °C under inert atmosphere of copper(II) nitrate embedded in chitosan films affords 1.1.1 facet-oriented copper nanoplatelets supported on few-layered graphene. Oriented (1.1.1) copper nanoplatelets on graphene undergo spontaneous oxi...
Graphene and chemically modified graphenes were resolved by micellar electrokinetic chromatography (MEKC) using sodium dodecylbenzenesulfonate (SDBS) as a micelle matrix. Graphene was successfully dispersed in a micellar solution, and a consecutive and broad signal was obtained by the MEKC with a 20 mmol dm⁻³ aqueous SDBS solution for Graphene Nanoplatelets. Chemically oxidized graphene was les...
A facile approach was developed to prepare multi-walled carbon nanotubes/graphene nanoplatelets hybrid materials through covalent bond formation. First, poly(acryloyl chloride) was grafted onto oxidized multi-walled carbon nanotubes through the reaction between the acyl chloride groups of poly and the hydroxyl groups of oxidized multi-walled carbon nanotubes. Second, the remaining acyl chloride...
For the utilization of graphene in various energy storage and conversion applications, it must be synthesized in bulk with reliable and controllable electrical properties. Although nitrogen-doped graphene shows a high doping efficiency, its electrical properties can be easily affected by oxygen and water impurities from the environment. We here report that boron-doped graphene nanoplatelets wit...
Electrically conductive polycarbonate foams containing a low concentration of graphene nanoplatelets (0.5 wt.%) were produced with variable range of expansion ratio by applying a high pressure batch foaming process using sc-CO2. The structure of the foams was assessed by means of SEM, AFM and WAXS, and the electrical conductivity was measured in the foam growing direction. Results showed that e...
In this work, we demonstrate a non-volatile metal-oxide semiconductor (MOS) memory with Quattro-layer graphene nanoplatelets as charge storage layer with asymmetric Al2O3/HfO2 tunnel oxide and we compare it to the same memory structure with 2.85-nm Si nanoparticles charge trapping layer. The results show that graphene nanoplatelets with Al2O3/HfO2 tunnel oxide allow for larger memory windows at...
Ultrasonic exfoliation of expanded graphite compound obtained by cold expansion of graphite intercalated with peroxodisulfuric acid was shown to allow the creation of graphene nanoplatelets with thickness of about 5-10 nm. The resulting graphene material contained surface oxide groups. The expanded graphite intercalation compound was exfoliated by ultrasound much easier than thermally expanded ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید