نتایج جستجو برای: Gold Nano particle (AuNPs)
تعداد نتایج: 301718 فیلتر نتایج به سال:
Objective(s): Drug delivery is an engineering technology to control the release and delivery of therapeutic agents to target organs, tissues, and cells. Metallic nanoparticles, such as gold nanoparticles (AuNPs) have exceptional properties which enable efficient drug transport into different cell types with reduced side effects and cytotoxicity to other tissues.Materials and Methods: AuNPs were...
Objective(s): Drug delivery is an engineering technology to control the release and delivery of therapeutic agents to target organs, tissues, and cells. Metallic nanoparticles, such as gold nanoparticles (AuNPs) have exceptional properties which enable efficient drug transport into different cell types with reduced side effects and cytotoxicity to other tissues.Materials and Methods: AuNP...
The polarization states of scattered photons can be used to map or image the anisotropic features a nanostructure. However, scattering strength depends heavily on refractivity contrast in near field under measurement, which limits imaging sensitivity for viral particles have little with their nano-ambientes. In this paper, we show photon signal magnified by introducing more abrupt change at vir...
Nano-sized particles are known to interfere with drug-metabolizing cytochrome P450 (CYP) enzymes, which can be anticipated to be a potential source of unintended adverse reactions, but the mechanisms underlying the inhibition are still not well understood. Herein we report a systematic investigation of the impacts of gold nanoparticles (AuNPs) on five major CYP isozymes under in vitro incubatio...
Dynamic switching of plasmonic monolayers built of gold nanoparticles (AuNPs) is achieved using nano-coatings of poly(isopropyl acrylamide) (PNIPAM). The distance between AuNPs can be dynamically tuned through the repeatable expansion and contraction of the PNIPAM shells at different temperatures, which results in rapid switching of the optical properties of the AuNP monolayer.
A comprehensive investigation on the formation mechanism of gold nanoparticles (AuNPs) in colloidal mixture obtained from the reduction of chloroauric acid (HAuCl4) solution using a single reducing agent (sodium citrate; process-I), (tannic acid; process-II), and a combination of two reducing agents (sodium citrate plus tannic acid; process-III) is reported. The growth steps at different time i...
The present work reports a green biosynthesis of gold nano particles (EO-AuNPs) using an essential oil (EO) as reducing agent the Au(III) in HAuCl4. EO was extracted by hydro-distillation from Diplotaxis acris flowers. A total 16 compounds were detected GC–MS and 5-methylsulfanylpentanenitrile identified major component (73.60 %). biosynthesized EO-AuNPs characterized performing UV–Vis, IR,XRD ...
A seed-mediated growth method for surface modification was applied to the attachment of gold nanoparticles (AuNPs) to glassy carbon (GC) surfaces. By simply immersing a GC plate at first into a seed solution containing 4 nm Au nano-seed particles and then into a growth solution containing HAuCl(4), ascorbic acid and cetyltrimethyammonium bromide, AuNPs could be successfully attached to the GC s...
Although many breast and lung cancers overexpress human epidermal growth factor receptor-2 (HER-2), no methods currently exist for effective and early detection of HER-2-positive cancers. To address this issue, we designed and synthesized dendrimer-based novel nano-imaging agents that contain gold nanoparticles (AuNPs) and gadolinium (Gd), conjugated with the humanized anti-HER-2 antibody (Herc...
We present here a novel conjugated aptamer-gold nanoparticle (Apt-AuNPs) fluorescent probe and its application for specific detection of recombinant human erythropoietin-α (rHuEPO-α). In this nanobiosensor, 12 nm AuNPs function as both a nano-scaffold and a nano-quencher (fluorescent energy acceptor), on the surface of which the complementary sequences are linked (as cODN-AuNPs) and pre-hybridi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید