نتایج جستجو برای: Germanium nanowires
تعداد نتایج: 21348 فیلتر نتایج به سال:
Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless a...
We investigate the growth procedures for achieving taper-free and kinked germanium nanowires epitaxially grown on silicon substrates by chemical vapor deposition. Singly and multiply kinked germanium nanowires consisting of <111> segments were formed by employing a reactant gas purging process. Unlike non-epitaxial kinked nanowires, a two-temperature process is necessary to maintain the taper-f...
The observation of pure phonon confinement effect in germanium nanowires is limited due to the illumination sensitivity of Raman spectra. In this paper we measured Raman spectra for different size germanium nanowires with different excitation laser powers and wavelengths. By eliminating the local heating effect, the phonon confinement effect for small size nanowires was clearly identified. We h...
The electrodeposition at room temperature of silicon and germanium nanowires from the airand water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P1,4) containing SiCl4 as Si source or GeCl4 as Ge source is investigated by cyclic voltammetry. By using nanoporous polycarbonate membranes as templates, it is possible to reproducibly grow pure silicon and germ...
germanium nanowires (genws) were synthesized using chemical vapor deposition (cvd) based on vapor–liquid–solid (vls) mechanism with au nanoparticles as catalyst and germanium tetrachloride (gecl4) as a precursor of germanium. au catalysts were deposited on silicon wafer as a thin film, firstly by sputtering technique and secondly by submerging the silicon substrates in au colloidal solution, wh...
Germanium/carbon core–sheath nanostructures and junctions are produced when Ge nanowires are subject to a thermal treatment in an organic vapor doped vacuum. The organic molecules pyrolyze on the surface of the Ge nanowires and form a continuous graphitic coating. The carbon-sheathed Ge nanowires undergo melting and evaporation at high temperature, which results in the formation of germanium/ca...
Electrical injection of spin-polarized electrons into a semiconductor, large spin diffusion length, and an integration friendly platform are desirable ingredients for spin-based devices. Here we demonstrate lateral spin injection and detection in germanium nanowires, by using ferromagnetic metal contacts and tunnel barriers for contact resistance engineering. Using data measured from over 80 sa...
Germanium nanowires (GeNWs) were synthesized using chemical vapor deposition (CVD) based on vapor–liquid–solid (VLS) mechanism with Au nanoparticles as catalyst and germanium tetrachloride (GeCl4) as a precursor of germanium. Au catalysts were deposited on silicon wafer as a thin film, firstly by sputtering technique and secondly by submerging the silicon substrates in Au colloidal s...
The effect of flux angle, substrate temperature and deposition rate on obliquely deposited germanium (Ge) films has been investigated. By carrying out deposition with the vapor flux inclined at 87 to the substrate normal at substrate temperatures of 250C or 300C, it may be possible to obtain isolated Ge nanowires. The Ge nanowires are crystalline as shown by Raman Spectroscopy.
The structure of indium-catalyzed germanium nanowires is investigated by atomic force microscopy, scanning confocal Raman spectroscopy and transmission electron microscopy. The nanowires are formed by a crystalline core and an amorphous shell. We find that the diameter of the crystalline core varies along the nanowire, down to few nanometers. Phonon confinement effects are observed in the regio...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید