نتایج جستجو برای: Generalized Lebesgue-Sobolev spaces
تعداد نتایج: 295657 فیلتر نتایج به سال:
We obtain Strichartz estimates for the fractional heat equations by using both the abstract Strichartz estimates of Keel-Tao and the HardyLittlewood-Sobolev inequality. We also prove an endpoint homogeneous Strichartz estimate via replacing L∞x (R ) by BMOx(R) and a parabolic homogeneous Strichartz estimate. Meanwhile, we generalize the Strichartz estimates by replacing the Lebesgue spaces with...
We firstly describe a maximal inequality for dual Sobolev spaces W−1,p. This one corresponds to a “Sobolev version” of usual properties of the Hardy-Littlewood maximal operator in Lebesgue spaces. Even in the euclidean space, this one seems to be new and we develop arguments in the general framework of Riemannian manifold. Then we present an application to obtain interpolation results for Sobol...
Boundedness results for bilinear square functions and vector-valued operators on products of Lebesgue, Sobolev, and other spaces of smooth functions are presented. Bilinear vector-valued Calderón-Zygmund operators are introduced and used to obtain bounds for the optimal range of estimates in target Lebesgue spaces including exponents smaller than one.
We investigate the existence of a weak nontrivial solution for the following problem. Our analysis is generally bathed on discussions of variational based on the Mountain Pass theorem and some recent theories one the generalized Lebesgue-Sobolev space. This paper guarantees the existence of at least one weak nontrivial solution for our problem. More precisely, by applying Ambrosetti and Rabinow...
In this article, the authors study Lebesgue point of functions from Hajłasz–Sobolev, Besov, and Triebel–Lizorkin spaces with generalized smoothness on doubling metric measure prove that exceptional sets their points have zero capacity via capacities related to these spaces. case are not locally integrable, also consider defined γ-medians instead classical ball integral averages establish corres...
Boundedness properties for pseudodifferential operators with symbols in the bilinear Hörmander classes of sufficiently negative order are proved. The results are obtained in the scale of Lebesgue spaces, and in some cases, end-point estimates involving weak-type spaces and BMO are provided as well. From the Lebesgue space estimates, Sobolev ones are then easily obtained using functional calculu...
For the 3D Navier–Stokes problem on the whole space, we study existence, regularity and stability of time-periodic solutions in Lebesgue, Lorentz or Sobolev spaces, when the periodic forcing belongs to critical classes of forces.
The objective of this paper is to report on recent progress on Strichartz estimates for the Schrödinger equation and to present the state-of-the-art. These estimates have been obtained in Lebesgue spaces, Sobolev spaces and, recently, in Wiener amalgam and modulation spaces. We present and compare the different technicalities. Then, we illustrate applications to well-posedness.
In this paper we prove an optimal local well-posedness result for the 1+2 dimensional system of nonlinear wave equations (NLW) with quadratic null-form derivative nonlinearities Qμν . The Cauchy problem for these equations is known to be ill-posed for data in the Sobolev space H with s ≤ 5/4 for all the basic null-forms, except Q0, thus leaving a gap to the critical regularity of sc = 1. Follow...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید