نتایج جستجو برای: GMDH-PNN model
تعداد نتایج: 2105295 فیلتر نتایج به سال:
in this study, a model for estimating the nfs thermal conductivity by using a gmdh-pnn has been investigated. nfs thermal conductivity was modeled as a function of the nanoparticle size, temperature, nanoparticle volume fraction and the thermal conductivity of the base fluid and nanoparticles. for this purpose, the developed network contains 8 layers with 2 inputs in each layer and also trainin...
In this paper, we propose the design procedure of advanced Polynomial Neural Networks(PNN) architecture fo r optimal model identification of complex and nonlinear system. The proposed PNN architecture is presented as the generic and advanced type. The essence of the design procedure dwells on the Group Method of Data Handling (GMDH). PNN is a flexible neural architecture whose structure is deve...
Recently, a lot of attention has been devoted to advanced techniques of system modeling. PNN(polynomial neural network) is a GMDH-type algorithm (Group Method of Data Handling) which is one of the useful method for modeling nonlinear systems but PNN performance depends strongly on the number of input variables and the order of polynomial which are determined by trial and error. In this paper, w...
In this study, a model for estimating the NFs thermal conductivity by using a GMDH-PNN has been investigated. NFs thermal conductivity was modeled as a function of the nanoparticle size, temperature, nanoparticle volume fraction and the thermal conductivity of the base fluid and nanoparticles. For this purpose, the developed network contains 8 layers with 2 inputs in each layer and also tra...
In this study, we introduce and investigate a class of neural architectures of Polynomial Neural Networks (PNNs), discuss a comprehensive design methodology and carry out a series of numeric experiments. PNN is a flexible neural architecture whose structure (topology) is developed through learning. In particular, the number of layers of the PNN is not fixed in advance but becomes generated on t...
The objective of this study was to apply an improved Group Method of Data Handling (GMDH) network model for prediction of debris flow by integrating dynamic rainfall data and environmental factors. The rainfall data were collected from weather information, and the environmental data were extracted from RS, GIS, drilling data, and geophysical data. The input variables used in the SAGA-GMDH model...
The group method of data handling technique (GMDH) and Box-Jenkins methods are two wellknown time series forecasting of mathematical modeling. In this paper, we introduce a hybrid modeling which combines the GMDH method with the Box-Jenkins method to model time series data. The Box-Jenkins method was used to determine the useful input variables of GMDH method and then the GMDH method which work...
In this paper, we proposed a novel hybrid group method of data handling least squares support vector machine (GLSSVM) algorithm, which combines the theory a group method of data handling (GMDH) with the least squares support vector machine (LSSVM). With the GMDH is used to determine the inputs of LSSVM method and the LSSVM model which works as time series forecasting. The aim of this study is t...
nowadays, due to increasing the complexity of ic engines, calibration task becomes more severe and the need to use surrogate models for investigating of the engine behavior arises. accordingly, many black box modeling approaches have been used in this context among which network based models are of the most powerful approaches thanks to their flexible structures. in this paper four network base...
The group method of data handling (GMDH) and differential evolution (DE) population-based algorithm are two well-known nonlinear methods of mathematical modeling. In this paper, both methods are explained and a new design methodology which is a hybrid of GMDH and DE is proposed. The proposed method constructs a GMDH network model of a population of promising DE solutions. The new hybrid impleme...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید