نتایج جستجو برای: GARCH
تعداد نتایج: 4072 فیلتر نتایج به سال:
This paper investigates the forecasting ability of four different GARCH models and the Kalman filter method. The four GARCH models applied are the bivariate GARCH, BEKK GARCH, GARCH-GJR and the GARCH-X model. The paper also compares the forecasting ability of the non-GARCH model the Kalman method. Forecast errors based on twenty UK company weekly stock return (based on timevary beta) forecasts ...
We reveal that in the estimation of univariate GARCH or multivariate generalized orthogonal GARCH (GO-GARCH) models, maximizing the likelihood is equivalent to making the standardized residuals as independent as possible. Based on that, we propose three factor GARCH models in the framework of GO-GARCH: independent-factor GARCH exploits factors that are statistically as independent as possible; ...
4 GARCH Models 7 4.1 Basic GARCH Specifications . . . . . . . . . . . . . . . . . . . 8 4.2 Diagnostic Checking . . . . . . . . . . . . . . . . . . . . . . . 11 4.3 Regressors in the Variance Equation . . . . . . . . . . . . . . . 12 4.4 The GARCH–M Model . . . . . . . . . . . . . . . . . . . . . . 12 4.5 The Threshold GARCH (TARCH) Model . . . . . . . . . . . . 12 4.6 The Exponential GARCH (EG...
This paper investigates the forecasting ability of five different versions of GARCH models. The five GARCH models applied are bivariate GARCH, GARCH-ECM, BEKK GARCH, GARCH-X and GARCH-GJR. Forecast errors based on four emerging stock futures portfolio return (based on forecasted hedge ratio) forecasts are employed to evaluate out-ofsample forecasting ability of the five GARCH models. Daily data...
To capture the missed information in the standardized errors by parametric multivariate generalized autoregressive conditional heteroskedasticity (MV-GARCH) model, we propose a new semiparametric MV-GARCH (SM-GARCH) model. This SM-GARCH model is a twostep model: firstly estimating parametric MV-GARCH model, then using nonparametric skills to model the conditional covariance matrix of the standa...
The augmented GARCH model is a unification of numerous extensions of the popular and widely used ARCH process. It was introduced by Duan and besides ordinary (linear) GARCH processes, it contains exponential GARCH, power GARCH, threshold GARCH, asymmetric GARCH, etc. In this paper, we study the probabilistic structure of augmented GARCH(1,1) sequences and the asymptotic distribution of various ...
This brief note offers an explicit algorithm for a multivariate GARCH model, called PC-GARCH, that requires only univariate GARCH estimation. It is suitable for problems with hundreds or even thousands of variables. PC-GARCH is compared to two other techniques of getting multivariate GARCH using univariate estimates.
We propose a new model for volatility forecasting which combines the Generalized Dynamic Factor Model (GDFM) and the GARCH model. The GDFM, applied to a large number of series, captures the multivariate information and disentangles the common and the idiosyncratic part of each series of returns. In this financial analysis, both these components are modeled as a GARCH. We compare GDFM+GARCH and ...
The autoregressive conditional heteroskedasticity (ARCH) and generalized autoregressive conditional heteroskedasticity (GARCH) models take the dependency of the conditional second moments. The idea behind ARCH/GARCH model is quite intuitive. For ARCH models, past squared innovations describes the present squared volatility. For GARCH models, both squared innovations and the past squared volatil...
Nowadays many researchers use GARCH models to generate volatility forecasts. However, it is well known that volatility persistence, as indicated by the sum of the two parameters G1 and A1[1], in GARCH models is usually too high. Since volatility forecasts in GARCH models are based on these two parameters, this may lead to poor volatility forecasts. It has long been argued that this high persist...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید