نتایج جستجو برای: Fuzzy support vector machine

تعداد نتایج: 1108303  

Journal: :iranian journal of fuzzy systems 2010
fatemeh moayedi ebrahim dashti

this paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. in this method, mammograms are segmented into regions of interest (roi) in order to extract features including geometrical and contourlet coefficients. the extracted features benefit from...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید باهنر کرمان - دانشکده ریاضی و کامپیوتر 1390

داده کاوی یکی از شاخه های مطرح علمی است که در سالهای اخیر توسعه فراوانی یافته است. بنابر گزارش دانشگاه mit، دانش نوین داده کاوی یکی از ده دانش در حال توسعه ای است که دهه آینده را با انقلاب تکنولوژیکی مواجه می سازد. دسته بندی داده ها، از مهمترین مباحث مطرح در داده کاوی است. در خصوص دسته-بندی داده ها روش های گوناگونی ارائه گردیده است که ماشین بردار پشتیبان(svm) از مهمترین آنها است و از آنجایی که ...

Journal: :DEStech Transactions on Computer Science and Engineering 2017

Journal: :amirkabir international journal of modeling, identification, simulation & control 2014
m.h. ranjbar jaferi s.m.a. mohammadi m. mohammadian

based on the problems caused by today conventional vehicles, much attention has been put on the fuel cell vehicles researches. however, using a fuel cell system is not adequate alone in transportation applications, because the load power profile includes transient that is not compatible with the fuel cell dynamic. to resolve this problem, hybridization of the fuel cell and energy storage device...

2011
Pu CHEN Dayong ZHANG Zhenhuan JIANG Chong WU P. Chen

Ensemble classification has received much attention in the machine learning community and has demonstrated promising capabilities in improving classification accuracy. And Support vector machines (SVMs) ensemble has been proposed to improve classification accuracy recently. However, currently used fusion strategies do not evaluate the importance degree of the output of individual component SVM ...

Journal: :iranian journal of oil & gas science and technology 2013
morteza nouri taleghani sadegh saffarzadeh mina karimi khaledi ghasem zargar

porosity is one of the fundamental petrophysical properties that should be evaluated for hydrocarbon bearing reservoirs. it is a vital factor in precise understanding of reservoir quality in a hydrocarbon field. log data are exceedingly crucial information in petroleum industries, for many of hydrocarbon parameters are obtained by virtue of petrophysical data. there are three main petrophysical...

Journal: :IEEE transactions on neural networks 2002
Chun-fu Lin Sheng-De Wang

A support vector machine (SVM) learns the decision surface from two distinct classes of the input points. In many applications, each input point may not be fully assigned to one of these two classes. In this paper, we apply a fuzzy membership to each input point and reformulate the SVMs such that different input points can make different contributions to the learning of decision surface. We cal...

2004
Yahya Forghani Hadi Sadoghi Yazdi Sohrab Effati

In this paper, we incorporate the concept of fuzzy set theory into the support vector regression (SVR). In our proposed method, target outputs of training samples are considered to be fuzzy numbers and then, membership function of actual output (objective hyperplane in high dimensional feature space) is obtained. Two main properties of our proposed method are: (1) membership function of actual ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شاهرود - دانشکده ریاضی 1392

در این پایان نامه یک شبکه عصبی‎ltrfootnote{‎neura‎l network}‎ تک لایه بازگشتی برای ماشین بردار پشتیبانی‎ltrfootnote{support vector machine} (svm)‎ در الگوی یادگیری طبقه بندی و رگرسیون را ارائه می کنیم. اولین مساله یادگیری ‎svm‎ تبدیل به فرمول معادل آن، و پس از آن یک لایه شبکه های عصبی بازگشتی برای یادگیری ‎svm‎ پیشنهاد شده است. شبکه عصبی پیشنهادی برای به دست آوردن راه حل بهینه از طبقه بندی بردا...

2008
Jennifer Abernethy John K. Williams

This paper details our methodology for entry in the 2008 American Meteorological Society’s 6 Conference on Artificial Intelligence Applications to Environmental Science AI competition. We trained probabilistic Support Vector Machine models with several separations of a multicategory storm type data set. We experimented with two fuzzy logic approaches to combine the model outputs into a coherent...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید