نتایج جستجو برای: Fractional sub-equation method
تعداد نتایج: 2018099 فیلتر نتایج به سال:
in this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (fpdes) in the sense of modified riemann-liouville derivative. with the aid of symbolic computation, we choose the space-time fractional zakharov-kuznetsov-benjamin-bona-mahony (zkbbm) equation in mathematical physics with a source to illustrate the validity a...
This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...
In this paper, based on the fractional Riccati equation, we propose an extended fractional Riccati sub-equation method for solving fractional partial differential equations. The fractional derivative is defined in the sense of the modified Riemann-Liouville derivative. By a proposed variable transformation, certain fractional partial differential equations are turned into fractional ordinary di...
in this paper an approximate analytical solution of the fractional zakharov-kuznetsov equations will be obtained with the help of the reduced differential transform method (rdtm). it is in-dicated that the solutions obtained by the rdtm are reliable and present an effective method for strongly nonlinear fractional partial differential equations.
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
In this paper, using the Lie group analysis method, we study the invariance properties of the time fractional fifth-order KdV equation. A systematic research to derive Lie point symmetries to time fractional fifth-order KdV equation is performed. In the sense of point symmetry, all of the vector fields and the symmetry reductions of the fractional fifth-order KdV equation are obtained. At last,...
Abstract. We develop a new infinite dimensional gluing method for fractional elliptic equations. In Part I, as a model problem, we construct a solution of the fractional Allen–Cahn equation vanishing on a rotationally symmetric surface which resembles a catenoid and has sub-linear growth at infinity. In Part II, we construct counterexamples to De Giorgi Conjectures to fractional Allen-Cahn equa...
The fractional derivatives in the sense of modified Riemann-Liouville derivative and the improved fractional sub-equation method are employed for constructing the exact solutions of nonlinear fractional partial differential equations. By means of this method, the space-time fractional generalized Hirota-Satsuma coupled Kortewegde Vries equations are successfully solved. As a result, three types...
In this paper we study numerical methods for hybrid fuzzy fractional differential equation, Degree of Sub element hood and the iteration method is used to solve the hybrid fuzzy fractional differential equations with a fuzzy initial condition.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید