نتایج جستجو برای: Fractional Laplacian
تعداد نتایج: 71365 فیلتر نتایج به سال:
this work concerns the study of existence and uniqueness to heat equation with fractional laplacian dierentiation in extended colombeau algebra.
This work concerns the study of existence and uniqueness to heat equation with fractional Laplacian dierentiation in extended Colombeau algebra.
The 1D discrete fractional Laplacian operator on a cyclically closed (periodic) linear chain with finite number N of identical particles is introduced. We suggest a ”fractional elastic harmonic potential”, and obtain the N -periodic fractional Laplacian operator in the form of a power law matrix function for the finite chain (N arbitrary not necessarily large) in explicit form. In the limiting ...
The fractional Laplacian and the fractional derivative are two different mathematical concepts (Samko et al, 1987). Both are defined through a singular convolution integral, but the former is guaranteed to be the positive definition via the Riesz potential as the standard Laplace operator, while the latter via the Riemann-Liouville integral is not. It is noted that the fractional Laplacian can ...
in this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-laplacian fractional order differential equations. we use schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. we include some examples to show the applicability of our results.
In this paper, we study the following fractional Schrödinger-poisson systems involving fractional Laplacian operator { (−∆)su+ V (|x|)u+ φ(|x|, u) = f(|x|, u), x ∈ R3, (−∆)tφ = u2, x ∈ R3, (1) where (−∆)s(s ∈ (0, 1)) and (−∆)t(t ∈ (0, 1)) denotes the fractional Laplacian. By variational methods, we obtain the existence of a sequence of radial solutions. c ©2016 All rights reserved.
The aim of this paper is to deduce a discrete version of the fractional Laplacian in matrix form defined on the 1D periodic (cyclically closed) linear chain of finite length. We obtain explicit expressions for this fractional Laplacian matrix and deduce also its periodic continuum limit kernel. The continuum limit kernel gives an exact expression for the fractional Laplacian (Riesz fractional d...
Abstract. Sharp error estimates in terms of the fractional Laplacian and a weighted Besov norm are obtained for Pitt’s inequality by using the spectral representation with weights for the fractional Laplacian due to Frank, Lieb and Seiringer and the sharp Stein-Weiss inequality. Dilation invariance, group symmetry on a non-unimodular group and a nonlinear Stein-Weiss lemma are used to provide s...
By virtue of Γ−convergence arguments, we investigate the stability of variational eigenvalues associated with a given topological index for the fractional p−Laplacian operator, in the singular limit as the nonlocal operator converges to the p−Laplacian. We also obtain the convergence of the corresponding normalized eigenfunctions in a suitable fractional norm.
Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید