نتایج جستجو برای: Fluid-Structure Interaction (FSI)

تعداد نتایج: 2215775  

2013

The characteristics of physiological blood flow in human carotid arterial bifurcation model have been numerically studied using a fully coupled fluid-structure interaction (FSI) analysis. This computational model with the fluid-structure interaction is constructed to investigate the flow characteristics and wall shear stress in the carotid artery. As the flow begins to decelerate after the peak...

Journal: :SIAM J. Scientific Computing 2008
Santiago Badia Annalisa Quaini Alfio Quarteroni

We discuss in this paper the numerical approximation of fluid-structure interaction (FSI) problems dealing with strong added-mass effect. We propose new semi-implicit algorithms based on inexact block-LU factorization of the linear system obtained after the space-time discretization and linearization of the FSI problem. As a result, the fluid velocity is computed separately from the coupled pre...

Size-dependent vibrational and instability behavior of fluid-conveying magneto-electro-elastic (MEE) tubular nano-beam subjected to magneto-electric potential and thermal field has been analyzed in this study. Considering the fluid-conveying nanotube as an Euler-Bernoulli beam, fluid-structure interaction (FSI) equations are derived by using non-classical constitutive relations for MEE material...

2012
H. Yang Huidong Yang

In this work, the robustness of the fluid-structure interaction simulation with a nearly incompressible elasticity model from our previous work [Partitioned solvers for the fluid-structure interaction problems with a nearly incompressible elasticity model, Comput Visual Sci, 14:227-247, 2012] is improved. At each time step of the FSI simulation, using properly chosen elementwise stabilization p...

2014
Minjie Zhu Michael H. Scott

Numerical difficulties are present in the particle finite element method even though it has been shown to be a powerful and effective approach to simulating fluid-structure interaction. To overcome problems of mass loss on the free surface and the added-mass effect, an improved fractional step method (FSM) that handles addedmass terms in a mathematically exact way is developed. A further benefi...

2015
Mariana Simão Jesus Mora-Rodriguez Helena M. Ramos

The dynamic interaction between the unsteady flow occurrence and the resulting vibration of the pipe are analyzed based on experiments and numerical models. Waterhammer, structural dynamic and fluid–structure interaction (FSI) are the main subjects dealt with in this study. Firstly, a 1D model is developed based on the method of characteristics (MOC) using specific damping coefficients for init...

2016
Boris Muha Sunčica Čanić

We study a nonlinear, moving boundary fluid-structure interaction (FSI) problem between an incompressible, viscous Newtonian fluid, modeled by the 2D Navier-Stokes equations, and an elastic structure modeled by the shell or plate equations. The fluid and structure are coupled via the Navier slip boundary condition and balance of contact forces at the fluid-structure interface. The slip boundary...

2014
Boris Muha

We study a 3D fluid-structure interaction (FSI) problem between an incompressible, viscous fluid modeled by the Navier-Stokes equations, and the motion of an elastic structure, modeled by the linearly elastic cylindrical Koiter shell equations, allowing structure displacements that are not necessarily radially symmetric. The problem is set on a cylindrical domain in 3D, and is driven by the tim...

2016
Laura Marimon Giovannetti Joseph Banks Stephen R. Turnock Stephen W. Boyd

For many applications, the ability of a foil to passively adapt to the experienced fluid loading could be advantageous, Nicholls-Lee & Turnock (2007): e.g. wind or tidal turbine blades, hydrofoils for sailing yachts, or marine propellers. Composite materials provide the opportunity to tailor the bend twist coupling of a structure to achieve these goals, Veers & Bir (1998). To allow such foils t...

Journal: :SIAM Journal of Applied Mathematics 2016
William Ko John M. Stockie

We perform a stability analysis for a fluid-structure interaction (FSI) problem in which a spherical elastic shell or membrane is immersed in a 3D viscous, incompressible fluid. The shell is an idealized structure having zero thickness, and has the same fluid lying both inside and outside. The problem is formulated mathematically using the immersed boundary framework in which Dirac delta functi...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید