نتایج جستجو برای: Finite Difference

تعداد نتایج: 656646  

Journal: :J. Comput. Physics 2014
Zhen-Sheng Sun Lei Luo Yu-Xin Ren Shi-Ying Zhang

Article history: Received 27 June 2013 Received in revised form 22 January 2014 Accepted 25 March 2014 Available online 2 April 2014

Journal: :SIAM J. Numerical Analysis 2017
Martin Stynes Eugene O'Riordan Jose L. Gracia

Journal: :J. Applied Mathematics 2013
Lijuan Su Pei Cheng

Fractional-order diffusion equations are viewed as generalizations of classical diffusion equations, treating super-diffusive flow processes. In this paper, in order to solve the fractional advection-diffusion equation, the fractional characteristic finite difference method is presented, which is based on the method of characteristics (MOC) and fractional finite difference (FD) procedures. The ...

2017
Fangzong Wang Yong Wang

Using classic differential quadrature formulae and uniform grids, this paper systematically constructs a variety of high-order finite difference schemes, and some of these schemes are consistent with the so-called boundary value methods. The derived difference schemes enjoy the same stability and accuracy properties with correspondent differential quadrature methods but have a simpler form of c...

Journal: :J. Comput. Physics 2014
Magnus Svärd Jan Nordström

High-order finite difference methods are efficient, easy to program, scale well in multiple dimensions and can be modified locally for various reasons (such as shock treatment for example). The main drawback has been the complicated and sometimes even mysterious stability treatment at boundaries and interfaces required for a stable scheme. The research on summation-byparts operators and weak bo...

2014
Wei Liu

and Applied Analysis 3 The grid function y(x, t) is a function defined at the grid points of g. we denote the nodal values of a grid function y(x, t) between time levels t 0 and t 0 as y (x, t) = y (x 1 , x 2 , t l,j i ) = y l,j n1 ,n2 , (11) for x ∈ ω i , i > 0, j = 0, . . . , m i . For x ∈ ω 0 we define y (x, t) = y (x 1 , x 2 , t l+1 0 ) = y l+1 n1 ,n2 . (12) δ x1 , δ x1 and δ x2 , δ x2 are ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه علم و صنعت ایران 1381

دراین پروژه ابتدا مروری بر ساختار محفظه ها کرده و بعد از آن به بررسی کاتد مجازی که اساس ساختار لامپهای توان بالا می باشد می پردازیم .سپس روش تقسیم بندی ذرات در سلولها ‏‎(particle in cell)‎‏ که جهت شبیه سازی این گونه محفظه ها بکار برده می شود ، مورد بررسی قرار می گیرد . در فصل بعد آلگوریتم و معادلات موجوددر این شبیه سازی همراه با مروری بر روش تفاضلی محدود ‏‎(finite difference method)‎‏ ارائه می ...

Journal: :SIAM J. Numerical Analysis 2005
Franco Brezzi Konstantin Lipnikov Mikhail J. Shashkov

The stability and convergence properties of the mimetic finite difference method for diffusion-type problems on polyhedral meshes are analyzed. The optimal convergence rates for the scalar and vector variables in the mixed formulation of the problem are proved.

2000
Paul A. Farrell Alan F. Hegarty John J. H. Miller Eugene O'Riordan Grigorii I. Shishkin

The error generated by the classical upwind finite difference method on a uniform mesh, when applied to a class of singularly perturbed model ordinary differential equations with a singularly perturbed Neumann boundary condition, tends to infinity as the singular perturbation parameter tends to zero. Note that the exact solution is uniformly bounded with respect to the perturbation parameter. F...

2004
Samuel S. Lee Hoh Peter In

It is important to simulate a groundwater transport process, e.g., pollutant migration, through the vadose zone and subsequent mixing within the saturated zone to assess potential impacts of contaminants in the subsurface in preliminary stages. It is challenging to simulate heterogeneous soil characteristics and non-uniform initial contaminant concentration. This paper proposes a vertically het...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید