نتایج جستجو برای: Feedforward neural networks
تعداد نتایج: 638547 فیلتر نتایج به سال:
in this paper, a novel hybrid method based on learning algorithmof fuzzy neural network and newton-cotesmethods with positive coefficient for the solution of linear fredholm integro-differential equation of the second kindwith fuzzy initial value is presented. here neural network isconsidered as a part of large field called neural computing orsoft computing. we propose alearning algorithm from ...
in this paper, we interpret a fuzzy differential equation by using the strongly generalized differentiability concept. utilizing the generalized characterization theorem. then a novel hybrid method based on learning algorithm of fuzzy neural network for the solution of differential equation with fuzzy initial value is presented. here neural network is considered as a part of large eld called n...
Rainfall-runoff models are used in the field of hydrology and runoff estimation for many years, but despite existing numerous models, the regular release of new models shows that there is still not a model that can provide sophisticated estimations with high accuracy and performance. In order to achieve the best results, modeling and identification of factors affecting the output of the model i...
This paper presents a feedforward neural network approach to sunspot forecasting. The sunspot series were analyzed with feedforward neural networks, formalized based on statistical models. The statistical models were used as comparison models along with recurrent neural networks. The feedforward networks had 24 inputs (depending on the number of predictor variables), one hidden layer with 20 ...
We investigate the performance of two different small-world feedforward neural networks for the diagnosis of diabetes. We use the Pima Indians Diabetic Dataset as input. We have previously shown than the Watts–Strogatz small-world feedforward neural network delivers a better classification performance than conventional feedforward neural networks. Here, we compare this performance further with ...
In this paper, we implement the method of Steepest Descent in single and multilayer feedforward artificial neural networks. In all previous works, all the update weight equations for single or multilayer feedforward artificial neural networks has been calculated by choosing a single activation function for various processing unit in the network. We, at first, calculate the total error function ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید