نتایج جستجو برای: F-index

تعداد نتایج: 689960  

The first general Zagreb index is defined as $M_1^lambda(G)=sum_{vin V(G)}d_{G}(v)^lambda$. The case $lambda=3$, is called F-index. Similarly, reformulated first general Zagreb index is defined in terms of edge-drees as $EM_1^lambda(G)=sum_{ein E(G)}d_{G}(e)^lambda$ and the reformulated F-index is $RF(G)=sum_{ein E(G)}d_{G}(e)^3$. In this paper, we compute the reformulated F-index for some grap...

Journal: :transactions on combinatorics 2012
wai chee shiu kwong harris

let $g=(v,e)$ be a connected simple graph. a labeling $f:v to z_2$ induces two edge labelings $f^+, f^*: e to z_2$ defined by $f^+(xy) = f(x)+f(y)$ and $f^*(xy) = f(x)f(y)$ for each $xy in e$. for $i in z_2$, let $v_f(i) = |f^{-1}(i)|$, $e_{f^+}(i) = |(f^{+})^{-1}(i)|$ and $e_{f^*}(i) = |(f^*)^{-1}(i)|$. a labeling $f$ is called friendly if $|v_f(1)-v_f(0)| le 1$. for a friendly labeling $f$ of...

Journal: :Proceedings of the American Mathematical Society 2017

Journal: :Nuclear Physics B 2011

Journal: :Discrete Mathematics, Algorithms and Applications 2016

Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$.  For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...

Journal: :journal of algebraic system 0
a. alhevaz department of mathematics, shahrood university of technology, p.o. box: 316- 3619995161, shahrood, iran. m. baghipur department of mathematics, shahrood university of technology, p.o. box: 316- 3619995161, shahrood, iran.

‎let $g=(v(g),e(g))$ be a simple connected graph with vertex set $v(g)$ and edge‎ ‎set $e(g)$‎. ‎the (first) edge-hyper wiener index of the graph $g$ is defined as‎: ‎$$ww_{e}(g)=sum_{{f,g}subseteq e(g)}(d_{e}(f,g|g)+d_{e}^{2}(f,g|g))=frac{1}{2}sum_{fin e(g)}(d_{e}(f|g)+d^{2}_{e}(f|g)),$$‎ ‎where $d_{e}(f,g|g)$ denotes the distance between the edges $f=xy$ and $g=uv$ in $e(g)$ and $d_{e}(f|g)=s...

Journal: :Malaysian Journal of Fundamental and Applied Sciences 2017

‎Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge‎ ‎set E(G)‎. ‎The (first) edge-hyper Wiener index of the graph G is defined as‎: ‎$$WW_{e}(G)=sum_{{f,g}subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=frac{1}{2}sum_{fin E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$‎ ‎where de(f,g|G) denotes the distance between the edges f=xy and g=uv in E(G) and de(f|G)=∑g€(G)de(f,g|G). ‎In thi...

Journal: :Discrete Mathematics, Algorithms and Applications 2016

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید