نتایج جستجو برای: Einstein manifold
تعداد نتایج: 55899 فیلتر نتایج به سال:
In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...
for a given riemannian manifold (m,g),it is an interesting question to study the existence of a conformal diffemorphism (also called as a conformal transformation) f : m ! m such that the metric g? = fg has one of the following properties: (i)(m; g?) has constant scalar curvature. (ii)(m; g?) is an einstein manifold.
in this paper, we obtain a necessary and sufficient condition for a conformal mapping between two weyl manifolds to preserve einstein tensor. then we prove that some basic curvature tensors of $w_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. also, we obtained the relation between the scalar curvatures of the weyl manifolds r...
the main objective of this paper is to find the necessary and sufficient condition of a given finslermetric to be einstein in order to classify the einstein finsler metrics on a compact manifold. the consideredeinstein finsler metric in the study describes all different kinds of einstein metrics which are pointwiseprojective to the given one. this study has resulted in the following theorem tha...
The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
In this paper we study curvature properties of semi - symmetric type of totally umbilical radical transversal lightlike hypersurfaces $(M,g)$ and $(M,widetilde g)$ of a K"ahler-Norden manifold $(overline M,overline J,overline g,overline { widetilde g})$ of constant totally real sectional curvatures $overline nu$ and $overline {widetilde nu}$ ($g$ and $widetilde g$ are the induced metrics on $M$...
The aim of the present paper is to study a Bochner Ricci semi-symmetric quasi-Einstein Hermitian manifold (QEH)n, a Bochner Ricci semi-symmetric generalised quasi-Einstein Hermitian manifold G(QEH)n and a Bochner Ricci semisymmetric pseudo generalised quasi-Einstein Hermitian manifold P (GQEH)n.
We have studied some geometric properties of conharmonically flat Sasakian manifold and an Einstein-Sasakian manifold satisfying R(X, Y ).N = 0. We have also obtained some results on special weakly Ricci symmetric Sasakian manifold and have shown that it is an Einstein manifold. AMS Mathematics Subject Classification (2000): 53C21, 53C25
One of the most interesting questions in Riemannian geometry is that of deciding whether a manifold admits curvatures of certain kinds. More specifically, one might want to know whether some given manifold admits a canonical metric, i.e. one with constant curvature of some form (sectional curvature, scalar curvature, etc.). (This will in fact have many topological implications.). One such probl...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید