نتایج جستجو برای: Doubly stochastic matrix
تعداد نتایج: 493629 فیلتر نتایج به سال:
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
in this paper, we study some kinds of majorizations on $textbf{m}_{n}$ and their linear or strong linear preservers. also, we find the structure of linear or strong linear preservers which are multiplicative, i.e. linear or strong linear preservers like $phi $ with the property $phi (ab)=phi (a)phi (b)$ for every $a,bin textbf{m}_{n}$.
in this paper we study the concept of latin-majorizati-on. geometrically this concept is different from other kinds of majorization in some aspects. since the set of all $x$s latin-majorized by a fixed $y$ is not convex, but, consists of :union: of finitely many convex sets. next, we hint to linear preservers of latin-majorization on $ mathbb{r}^{n}$ and ${m_{n,m}}$.
Let Ωn denote the set of all n × n doubly stochastic matrices. Two unequal matrices A and B in Ωn are called permanental mates if the permanent function is constant on the line segment t A + (1 − t)B, 0 ≤ t ≤ 1, connecting A and B. We study the perturbation matrix A + E of a symmetric matrix A in Ωn as a permanental mate of A. Also we show an example to disprove Hwang’s conjecture, which states...
Let T be an arbitrary n × n matrix with real entries. We explicitly find the closest (in Frobenius norm) matrix A to T , where A is n × n with real entries, subject to the condition that A is “generalized doubly stochastic” (i.e. Ae = e and eA = e , where e = (1, 1, ..., 1) , although A is not necessarily nonnegative) and A has the same first moment as T (i.e. eT1 Ae1 = e T 1 Te1). We also expl...
A determinantal approximation is obtained for the permanent of a doubly stochastic matrix. For moderate-deviation matrix sequences, the asymptotic relative error is of order O(n−1). keywords: Doubly stochastic Dirichlet distribution; Maximum-likelihood projection; Sinkhorn projection
In this paper, we obtain sharp upper and lower bounds for the smallest entries of doubly stochastic matrices of trees and characterize all extreme graphs which attain the bounds. We also present a counterexample to Merris’ conjecture on relations between the smallest entry of the doubly stochastic matrix and the algebraic connectivity of a graph in [R. Merris, Doubly stochastic graph matrices I...
In this paper a nearest doubly stochastic matrix problem is studied. This problem is to find the closest doubly stochastic matrix with the prescribed (1, 1) entry to a given matrix. According to the well-established dual theory in optimization, the dual of the underlying problem is an unconstrained differentiable but not twice differentiable convex optimization problem. A Newton-type method is ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید