نتایج جستجو برای: Double Roman domatic number

تعداد نتایج: 1396583  

A double Roman dominating function on a graph $G$ with vertex set $V(G)$ is defined in cite{bhh} as a function$f:V(G)rightarrow{0,1,2,3}$ having the property that if $f(v)=0$, then the vertex $v$ must have at least twoneighbors assigned 2 under $f$ or one neighbor $w$ with $f(w)=3$, and if $f(v)=1$, then the vertex $v$ must haveat least one neighbor $u$ with $f(u)ge 2$. The weight of a double R...

Journal: :Discussiones Mathematicae Graph Theory 2020

Journal: :Discrete Applied Mathematics 2015
Lutz Volkmann

A signed Roman dominating function (SRDF) on a graph G is a function f : V (G) → {−1, 1, 2} such that u∈N [v] f(u) ≥ 1 for every v ∈ V (G), and every vertex u ∈ V (G) for which f(u) = −1 is adjacent to at least one vertex w for which f(w) = 2. A set {f1, f2, . . . , fd} of distinct signed Roman dominating functions on G with the property that ∑d i=1 fi(v) ≤ 1 for each v ∈ V (G), is called a sig...

2012
H. Aram S. M. Sheikholeslami L. Volkmann

Let k be a positive integer, and let G be a simple graph with vertex set V (G). A k-distance Roman dominating function on G is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 has a vertex with label 2 within distance k from each other. A set {f1, f2, . . . , fd} of k-distance Roman dominating functions on G with the property that ∑d i=1 fi(v) ≤ 2 for each v ∈ V (G), is call...

Journal: :EJGTA 2015
Seyed Mahmoud Sheikholeslami Lutz Volkmann

A signed Roman dominating function on the digraphD is a function f : V (D) −→ {−1, 1, 2} such that ∑ u∈N−[v] f(u) ≥ 1 for every v ∈ V (D), where N−[v] consists of v and all inner neighbors of v, and every vertex u ∈ V (D) for which f(u) = −1 has an inner neighbor v for which f(v) = 2. A set {f1, f2, . . . , fd} of distinct signed Roman dominating functions on D with the property that ∑d i=1 fi(...

Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....

Journal: :Applied Mathematics Letters 2010

Journal: :Australasian J. Combinatorics 2016
Lutz Volkmann

Let k ≥ 1 be an integer. A signed Roman k-dominating function on a digraph D is a function f : V (D) −→ {−1, 1, 2} such that ∑x∈N−[v] f(x) ≥ k for every v ∈ V (D), where N−[v] consists of v and all in-neighbors of v, and every vertex u ∈ V (D) for which f(u) = −1 has an in-neighbor w for which f(w) = 2. A set {f1, f2, . . . , fd} of distinct signed Roman k-dominating functions on D with the pro...

A Roman dominating function (RDF) on a digraph $D$ is a function $f: V(D)rightarrow {0,1,2}$ satisfying the condition that every vertex $v$ with $f(v)=0$ has an in-neighbor $u$ with $f(u)=2$. The weight of an RDF $f$ is the value $sum_{vin V(D)}f(v)$. The Roman domination number of a digraph $D$ is the minimum weight of an RDF on $D$. A set ${f_1,f_2,dots,f_d}$ of Roman dominating functions on ...

Let $D$ be a finite simple digraph with vertex set $V(D)$ and arcset $A(D)$. A twin signed total Roman dominating function (TSTRDF) on thedigraph $D$ is a function $f:V(D)rightarrow{-1,1,2}$ satisfyingthe conditions that (i) $sum_{xin N^-(v)}f(x)ge 1$ and$sum_{xin N^+(v)}f(x)ge 1$ for each $vin V(D)$, where $N^-(v)$(resp. $N^+(v)$) consists of all in-neighbors (resp.out-neighbors) of $v$, and (...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید