نتایج جستجو برای: Distance Metric Learning

تعداد نتایج: 886297  

Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

2014
Xiao Fang Najim Dehak James R. Glass

This thesis explores the use of Bayesian distance metric learning (Bayes-dml) for the task of speaker verification using the i-vector feature representation. We propose a framework that explores the distance constraints between i-vector pairs from the same speaker and different speakers. With an approximation of the distance metric as a weighted covariance matrix of the top eigenvectors from th...

2012
Qiong Cao Yiming Ying Peng Li

The success of many machine learning algorithms (e.g. the nearest neighborhood classification and k-means clustering) depends on the representation of the data as elements in a metric space. Learning an appropriate distance metric from data is usually superior to the default Euclidean distance. In this paper, we revisit the original model proposed by Xing et al. [24] and propose a general formu...

2012
Mohammad Norouzi David J. Fleet Ruslan Salakhutdinov

Motivated by large-scale multimedia applications we propose to learn mappings from high-dimensional data to binary codes that preserve semantic similarity. Binary codes are well suited to large-scale applications as they are storage efficient and permit exact sub-linear kNN search. The framework is applicable to broad families of mappings, and uses a flexible form of triplet ranking loss. We ov...

Journal: :Journal of Open Source Software 2018

Journal: :Statistical Analysis and Data Mining: The ASA Data Science Journal 2016

Journal: :Pattern Recognition 2011
Yaoliang Yu Jiayan Jiang Liming Zhang

Classic linear dimensionality reduction (LDR) methods, such as principal component analysis (PCA) and linear discriminant analysis (LDA), are known not to be robust against outliers. Following a systematic analysis of the multi-class LDR problem in a unified framework, we propose a new algorithm, called minimal distance maximization (MDM), to address the non-robustness issue. The principle behi...

2006
Liu Yang Rong Jin

Many machine learning algorithms, such as K Nearest Neighbor (KNN), heavily rely on the distance metric for the input data patterns. Distance Metric learning is to learn a distance metric for the input space of data from a given collection of pair of similar/dissimilar points that preserves the distance relation among the training data. In recent years, many studies have demonstrated, both empi...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید