نتایج جستجو برای: Composite Kernels

تعداد نتایج: 137874  

2005
Thomas Briggs Tim Oates

Kernel-based data mining algorithms, such as Support Vector Machines, project data into high-dimensional feature spaces, wherein linear decision surfaces correspond to non-linear decision surfaces in the original feature space. Choosing a kernel amounts to choosing a high-dimensional feature space, and is thus a crucial step in the data mining process. Despite this fact, and as a result of the ...

2011
ASGER LUNDE NEIL SHEPHARD

We propose a composite realized kernel to estimate the ex-post covariation of asset prices. Composite realized kernels are a data efficient method where the covariance estimate is composed of univariate realized kernels to estimate variances and bivariate realized kernels to estimate correlations. We analyze the merits of our composite realized kernels in an ultra high dimensional environment, ...

2013
Guo-Xian Yu Huzefa Rangwala Carlotta Domeniconi Guoji Zhang Zili Zhang

Determining protein function constitutes an exercise in integrating information derived from several heterogeneous high-throughput experiments. To utilize the information spread across multiple sources in a combined fashion, these data sources are transformed into kernels. Several protein function prediction methods follow a two-phased approach: they first optimize the weights on individual ker...

2011
Petra Vidnerová Roman Neruda

In this paper we propose a novel evolutionary algorithm for regularization networks. The main drawback of regularization networks in practical applications is the presence of meta-parameters, including the type and parameters of kernel functions Our learning algorithm provides a solution to this problem by searching through a space of different kernel functions, including sum and composite kern...

2009
Frank Reichartz Hannes Korte Gerhard Paass

The automatic extraction of relations between entities expressed in natural language text is an important problem for IR and text understanding. In this paper we show how different kernels for parse trees can be combined to improve the relation extraction quality. On a public benchmark dataset the combination of a kernel for phrase grammar parse trees and for dependency parse trees outperforms ...

2001
Thorsten Joachims Nello Cristianini John Shawe-Taylor

2013
Timothy A. Miller Steven Bethard Dmitriy Dligach Sameer Pradhan Chen Lin Guergana K. Savova

The clinical narrative contains a great deal of valuable information that is only understandable in a temporal context. Events, time expressions, and temporal relations convey information about the time course of a patient’s clinical record that must be understood for many applications of interest. In this paper, we focus on extracting information about how time expressions and events are relat...

2011
Md. Faisal Mahbub Chowdhury Alberto Lavelli

Detection of drug-drug interaction (DDI) is crucial for identification of adverse drug effects. In this paper, we present a range of new composite kernels that are evaluated in the DDIExtraction2011 challenge. These kernels are computed using different combinations of tree and feature based kernels. The best result that we obtained is an F1 score of 0.6370 which is higher than the already publi...

2013
Aissam Bekkari Mostafa El yassa Soufiane Idbraim Driss Mammass Azeddine Elhassouny Danielle Ducrot

The classification of remote sensing images has done great forward taking into account the image’s availability with different resolutions, as well as an abundance of very efficient classification algorithms. A number of works have shown promising results by the fusion of spatial and spectral information using Support Vector Machines (SVM) which are a group of supervised classification algorith...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->