نتایج جستجو برای: Cohen-Macaulay
تعداد نتایج: 11133 فیلتر نتایج به سال:
Let be a local Cohen-Macaulay ring with infinite residue field, an Cohen - Macaulay module and an ideal of Consider and , respectively, the Rees Algebra and associated graded ring of , and denote by the analytic spread of Burch’s inequality says that and equality holds if is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of as In this paper we ...
Let be a commutative Noetherian ring and let I be a proper ideal of . D’Anna and Fontana in [6] introduced a new construction of ring, named amalgamated duplication of along I. In this paper by considering the ring homomorphism , it is shown that if , then , also it is proved that if , then there exists such that . Using this result it is shown that if is generically Cohen-Macaulay (resp. gen...
let $(r,m)$ be a commutative noetherian local ring, $m$ a finitely generated $r$-module of dimension $d$, and let $i$ be an ideal of definition for $m$. in this paper, we extend cite[corollary 10(4)]{p} and also we show that if $m$ is a cohen-macaulay $r$-module and $d=2$, then $lambda(frac{widetilde{i^nm}}{jwidetilde{i^{n-1}m}})$ does not depend on $j$ for all $ngeq 1$, where $j$ is a minimal ...
We introduce a generalization of the notion of depth of an ideal on a module by applying the concept of local cohomology modules with respect to a pair of ideals. We also introduce the concept of $(I,J)$-Cohen--Macaulay modules as a generalization of concept of Cohen--Macaulay modules. These kind of modules are different from Cohen--Macaulay modules, as an example shows. Also an art...
Let $(R,underline{m})$ be a commutative Noetherian local ring and $M$ be a non-zero finitely generated $R$-module. We show that if $R$ is almost Cohen-Macaulay and $M$ is perfect with finite projective dimension, then $M$ is an almost Cohen-Macaulay module. Also, we give some necessary and sufficient condition on $M$ to be an almost Cohen-Macaulay module, by using $Ext$ functors.
We consider a class of hypergraphs called hypercycles and we show that a hypercycle $C_n^{d,alpha}$ is shellable or sequentially the Cohen--Macaulay if and only if $nin{3,5}$. Also, we characterize Cohen--Macaulay hypercycles. These results are hypergraph versions of results proved for cycles in graphs.
we consider a class of hypergraphs called hypercycles and we show that a hypercycle $c_n^{d,alpha}$ is shellable or sequentially the cohen--macaulay if and only if $nin{3,5}$. also, we characterize cohen--macaulay hypercycles. these results are hypergraph versions of results proved for cycles in graphs.
we introduce a generalization of the notion of depth of an ideal on a module by applying the concept of local cohomology modules with respect to a pair of ideals. we also introduce the concept of $(i,j)$-cohen--macaulay modules as a generalization of concept of cohen--macaulay modules. these kind of modules are different from cohen--macaulay modules, as an example shows. also an art...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید