نتایج جستجو برای: Characteristic polynomial
تعداد نتایج: 268126 فیلتر نتایج به سال:
let $d$ be a digraph with skew-adjacency matrix $s(d)$. then the skew energyof $d$ is defined to be the sum of the norms of all eigenvalues of $s(d)$. denote by$mathcal{o}_n$ the class of digraphs on order $n$ with no even cycles, and by$mathcal{o}_{n,m}$ the class of digraphs in $mathcal{o}_n$ with $m$ arcs.in this paper, we first give the minimal skew energy digraphs in$mathcal{o}_n$ and $mat...
A [ An−1 + p1A n−2 + · · ·+ pn−1 In ] = −pn In . Since A is nonsingular, pn = (−1)n det(A) 6= 0; thus the result follows. Newton’s Identity. Let λ1, λ2, . . . , λn be the roots of the polynomial K(λ) = λ + p1λ n−1 + p2λ n−2 + · · · · · ·+ pn−1λ+ pn. If sk = λ k 1 + λ k 2 + · · ·+ λn, then pk = − 1 k (sk + sk−1 p1 + sk−2 p2 + · · ·+ s2 pk−2p1 + s1 pk−1) . Proof. From K(λ) = (λ − λ1)(λ − λ2) . . ...
ABSTRACT. Suppose G is a graph, A(G) its adjacency matrix and f(G, x)=x^n+a_(n-1)x^(n-1)+... is the characteristic polynomial of G. The matching polynomial of G is defined as M(G, x) = x^n-m(G,1)x^(n-2) + ... where m(G,k) is the number of k-matchings in G. In this paper, we determine the relationship between 2k-th coefficient of characteristic polynomial, a_(2k), and k-th coefficient of matchin...
Let G^s be a signed graph, where G = (V;E) is the underlying simple graph and s : E(G) to {+, -} is the sign function on E(G). In this paper, we obtain k-th signed spectral moment and k-th signed Laplacian spectral moment of Gs together with coefficients of their signed characteristic polynomial and signed Laplacian characteristic polynomial are calculated.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید